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SUMMARY

In this paper, a newly developed three-point approximation scheme is proposed. The expression of this scheme
consisis of a linear combination of the direct and reciprocal linear Taylor expansions as well as of the lumped
diagonal terms of the second-order direct and inverse terms. The unknown parameters of the expression are
computed on the basis of the function and gradient values at three points in the design space. Based on this
approach, the accuracy of the existing constraint approximation methods can be improved. The eflectiveness
of the proposed approach is demonstrated on a number of numerical examples. The numerical results are
also compared with thoge of the previously published work. Copyright © 200! John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to reduce the computational efforts and to enhance the efficiency of the optimization
process, the use of explicit albeit approximate expression for the constraint and objective functions
in terms of design variables is a common technique in any structural optimization scheme. It
has been widely known that more accurate function approximations can reduce the analysis cost
greatly. Therefore, since the introduction of approximation concepts by Schmit er al. [1] in the
mid-1970s, the development of high-quality and reliable constraint approximation scheme has been
the subject of many research activities. A lot of attempts have been made to approximate the
constraint and objective functions in multidisciplinary optimization problems which are usually
computationally expensive to evaluate with less computational efforts and high accuracy. As pointed
out by Barthelemy and Haftka [2], there are three categories of approximations according to
their range of applicability in the design space. They are named as local, global and mid-range
approximation, respectively.

The local approximation is constructed by using the local information of function values and
their sensitivities at single design point. This approximation is only valid at the vicinity of the
expanding point. The simplest approach of this type is the linear approximation based on the
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Taylor series. Another often used approach of this type is the reciprocal approximation. It is in
nature the Taylor series expansion in terms of reciprocal variables. Starner and Haftka [3] have
also shown that a hybrid constraints mixing the direct variables and reciprocal variables can yield
a more conservative approximation, which has the advantage of giving convex sub-problem.

The global approximation, on the other hand, tries to construct approximate functions, usually
polynomials, for whole area of the design parameters. Global approximation approaches are often
used to modify the formulation of the original design problems, in most case of which the explicit
formulation is not known, and to generate an alternative formulation that is more tractable. The
most commen global approximation method is the response surface approach, in which the function
is sampled at a number of design points, and then an analytical expression called the response
surface polynomial is fitted to the sample data. Construction of response surface often relies heavily
on the theory of design-of-experiment. The linear or non-linear regression technique is used to fit
the surface, and the fitted response surface is employed to search an optimum design. The problem
associated with global approximation is that it requires many response analyses like finite element
method at many design points in the design space for obtaining the approximate function which
is valid for whole area of the design parameters. Therefore, the global approximation has been
believed usable only for design problems with a few design parameters, only when the sensitivity
information is not available or costly.

Mid-range approximation is an attempt to endow local function approximation with a wider
range of applicability. The use of information at several points can achieve this purpose. A two-
point approximation was proposed by Fadel er al. [4] to enhance the quality of approximation.
Wang and Grandhi [5-7] generalized the work of Fadel and proposed a series of new multi-point
approximation approaches by using two or more points information of optimization iterations. In
their work, intervening variables have been used to control the non-linearity of the approximations.
Good results have been reported by employing this approach to solve the size and configuration
optimization problems. Salajegheh [8] developed a three-point approximation scheme based on the
function and gradient information at three different design points. He also applied this method to
optimize the plate structures subjected to stress and frequency constraints and obtained satisfactory
results. Sui [9] has also proposed a two-point approximation approach by employing the informa-
tion obtained at two design points. The state art of multi-point approximation has been reviewed
intensively by Wang and Grandhi {5].

In the present study, a newly developed three-point approximation scheme (TPA) is proposed.
The expression of this scheme consists of a linear combination of the direct and reciprocal linear
Taylor expansions as well as of the lumped diagonal terms of the second-order direct and inverse
terms. The unknown parameters of the expression are computed on the basis of the function and
gradient values at three points in the design space. Based on this approach, the accuracy of the
existing constraint approximation methods can be improved. The effectiveness of the proposed
approach is demonstrated on a number of numerical examples. The numerical results are also
compared with those of the previously published works.

2. REVIEW OF MULTI-POINT APPROXIMATIONS
In this section, a brief review of the earlier developments of multi-point approximation is presented
to understand well the previously proposed method. In the following, X = (x;,x3,...,x,)" is defined

as a vector of design variables. X' = (x!,x},...,x )" refers to the ith data point in the design space.

Copyright © 2001 John Wiley & Sons, Lid. Int. J. Numer. Meth. Engng 2001; 50:869-884
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2.1. Two-point approximation approach

2.1.1. Two-point exponential approximation approach. This approximation scheme has been in-
troduced by Fadel et al. [4]. It is a linear Taylor approximation in terms of the following inter-
mediate variables:

P

yl-—.:x‘.', i=1,2....,n (1)

where the exponent p; for each design variable is determined by matching the derivatives of the
approximate function with those of the exact function at previous data point.

2.1.2. Two-point adaptive non-linear approximation approach-TANA. This approach has been
proposed by Wang and Grandhi [6]. In this approach, the non-linear index of each design variable
was chosen as the same value and calculated numerically by matching the approximate and exact
function values at two different points.

2.1.3. TANA-1 and TANA-2 approximation approach. To utilize more information in construct-

ing a better approximation, Wang and Grandhi [5] have proposed two kinds of improved two-point

approximation schemes by employing both function and derivative values of two points. In TANA-
1 approach, the approximated function is expanded at one point X' as

n Ef(XN) (x)e

0 = foxy+ 3 AEIE 2

i=1 X bi

[xP = (x1)P] +¢ (2)

where ¢ is a constant, representing the residue of the first-order Taylor approximation in terms of
the intervening variables y; = x/. To evaluate p; and &, the approximate function value and its
derivatives are matched with those of the exact function at another point X,

In TANA-2 approach, the approximate function is obtained by expanding the function at the

point X2 and replacing the constant term ¢ in TANA-1 by the term &), , [x” —(x,-z)P']z,f'Z,
which takes the effect of second-order terms of Taylor expansion into consideration. It can be
written as follows:

2. 0f (X*) (:3)! =7

X)) =rXH+3 [xP — ()] + szi’: [xP — 2] 2 (3)
i=1 i=l

ax; Pi
In this approach, the values of p; and & have been evaluated by matching the derivatives and the
function values with those of the exact function at previous point X'.

It has been reported that good results can be obtained by employing these methods for constraint
approximations. They can provide better accuracy than lincar and reciprocal methods for highly
nonlinear problems. But it should be noted that since the equations for the determination of the
exponent p, are non-linear, numerical iterative search process is required for the evaluation of
these quantities.

2.1.4. Sui's two-point approximation approach [9]. In this approach, the approximate function is
expressed as

X)) =a+ i}iff‘-x,- + _’_"zlv.-/x,- )

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 35.869-884
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The 2n + 1 unknown parameters a;,f; and 7 are computed by matching the approximate
function value and exact function value at one matching point, and the derivatives of the ap-
proximate function and exact function at both of the expanding and matching point. Good re-
sults are reported by employing this approach for the solutions of structural optimization
problems.

2.2. Three-point approximation approach

Recently, Salajegheh [8] has proposed a three-point approximation approach to achieve a higher
quality approximation. This approach can be described as follows. Let X', X? and X3 be three
consecutive points in the design space. By choosing the intermediate variables as yi=x" and
expanding the function at the middle-point X? in terms of y;, the approximate function can be
expressed as

n I(XP) (xF) 7 [

X)) = f(X*)+ ) Gt e £ T P — (_r'_z}p,] 4

. P 2 PJ“Z i kg
& m Yol -G e )

n
==

To evaluate the unknown parameters p;, ¢; and & 2n + | equations in total are required.
Here, 2n equations are obtained by differentiating /*(X) and matching the derivatives with those
of the exact function at points X' and X?. Another equation is obtained by matching the ex-
act and approximate function values at one of the point X' or X*. It has been reported by
the author that efficient optimum design of plate structures with stress, displacement and fre-
quency constraints can be achieved by employing this approach. Just like that of TANA-2, how-
ever, the main drawback of this approach is that a set of coupled non-linear equations need
to be solved for the evaluation of the values of p;, which is usually high in computational
cost for most of the practical design optimization problems. When the numbers of the design
variables and active constraints are large, the determinations of the values of p; may even
take much more floating operations than that of FEM analysis. Moreover, because of the non-
linear characteristics of the equations, we encounter the difficulty that the values of p; cannot
always be available for arbitrary function and gradient values of the expanding and matching
points.

2.3. Multi-point approximation approach

Wang and Grandhi [7] proposed an approximation approach based on the multiple function and
gradient information by using Hermite interpolation concepts. This approximation possesses the
property of reproducing the function and gradient information of known data points. But it has
been reported that this approach is not as stable as TANA-1 and TANA-2 approach when used
for the solutions of structural optimization problems.

3. NEW THREE-POINT APPROXIMATION SCHEME
In this paper, a new three-point approximation approach (TPA) is proposed. It is based on the
linear combination of Taylor expansions in terms of both direct and reciprocal variables. Let

X', X° and X? be three consecutive points. The approximate function is assumed as taking the

Copynight © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:869-884
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F(X)= f(X% Z T {x(x, %)+ B; (x;- = {i‘w)]
éx, x

i

5 2
Y-—‘C)L 522(1_}6) (6)

From Equation (6) it can be clearly seen that this approximation scheme is just a linear com-
bination of first-order Taylor expansions in terms of both direct and reciprocal variables and
is also taken the second-order effect into consideration by assuming the Hessian matrix has
only diagonal elements of the same value (¢, for direct variables, and ¢; for reciprocal
variables).

Denoting the current design point as X” and the other two design points as X' and X2, respec-
tively, the matching conditions for the evaluation of the unknown parameters «;, B, (i=1,2,... ,n),
and ¢, ¢» can be written as follows:

VA X)lx=x = V/ Xlxxt, VX xex: = VX xaxe, X = £(XY), XD = £(XH)
(7

where f(X)|x—x- and V/(X)|x=x =(&f/éx),... ,¢f/¢x,)" |x=x: Tepresent the exact value of the
constraint function and its derivative at data point X', respectively.

Since Equation (7) gives 2n + 2 linear algebra equations, then the 2n + 2 unknowns x, f;
and ¢y, ¢; can be evaluated by solving this system of linear algebra equations. In the following
derivation, we assume that the function and gradient information have already been obtained at
the point of X°, X' and X

From matching conditions, we have

(,f X0 Y] = 11 o
(Xo) %+ fi ( ) | +e {x —x) + ¢ ((xll)i) (xf = xu) = (X ) (8)

!

Y ANl d
;J:I KO) x; -4 ﬁl (%) + C) (,\’3 B x:)) o ¢y (EF)_) (12 . xo) _ j (x‘_ {9)

i

SHXN = (X0 + (a o0+ b B) +aw' + b = £(X") (10)
SHUX) = (X0 + 3 (@l + B1B) + aw? + el = £(X?) (11)
i—1
Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fngng 2001; 50:869-884
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8":— .. 02__ - - — 13
h(m-3) #=klz-m a

Let

] -] 1 |
-2 - (@lla-3) (14)

=(g
=

i} o -
G- o (- o)
=i{m [0 - Y] + (x;”—xPJ(-r?f-'x:’)"+§§'-(X?)(xf—x?)}, y=1,2 (16)
i—1 Ay

=t 2 {8 = ) (el () (F =) ] 00 =12
an

5= 04+ 5 { [0 = 0] (e —el) i+ () —xf) (6 el) (81sl) " ik () =) e} v =12

i=1

(18)

By solving the cquations in (8)~(11), we can obtain that
- /XN — /(X% - |] i _ZE;FXE) = fX%) - y)s’ (19)
_ XD /X0y — el (20)

5!
Once after the values of ¢; and ¢, are obtained, the values of «;, f§; can be computed by inserting
the values of ¢; and ¢ into Equations (8) and (9). Up to now, all the values of the unknown
coefficients have been determined by employing the matching conditions.

It should be noted that for the new approach proposed here, all of the unknewn coefficients
can be identified in a closed form, no numerical scarch process is required unlike in TANA-1,
TANA-2 and Salajegheh’s method. Therefore, much computational efforts can be reduced for the
solution of unknown coefficients.

Copyright © 2001 John Wiley & Sons, Ltd. int. J. Numer. Meth. Engng 2001, 50:869-884
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4. NUMERICAL EXAMPLES

In this section, several numerical examples are selected to demonstrate the effectiveness and the
accuracy of the proposed approximation scheme, and the results are also compared with those
obtained by other methods such as TANA-1, lincar and reciprocal approximation approach. This
section includes two parts. The first part is for simple problems with closed-form solutions, whereas
the second part presents applications to structural optimization.

4.1. Application to polynomial approximation
In all of the examples, the test points are generated using
X=X’+2aD (21)

where X” is an expanding point, x is a step length and D is a vector representing the search
direction. We use the relative error percentage and the absolute error in evaluating the accuracy.
For all of the test examples, the relative error index is defined as

Approximation — Exact

Relative error percentage = -——— x 100 per cent (22)
Exact
and the absolute error index is defined as
Absolute error = Exact — Approximation (23)

Example 1. This example is taken from Reference [S5]. The function to be approximated is
defined as

: 10 30 15 2 25 108 40 47
fy=—+ =5+ —+5+—+-—35 + + 5, — 10 (24)
X n X2 X5 X3 3 X4 X3

This example has been examined by employing the lincar, reciprocal, TANA-1, and the proposed
TPA scheme with the selections of D as D, =(1.1,1, )", Do =(0.1,0, 1", Dy=(1.—1.1,—1)7"
and Ds=(1,0,1,0)", respectively. For this example, the expanding points for all methods are
selected as X°=(1.2,1.2,1.2,1.2)7. The matching point for TANA-1 is selected as X' =(1.0,1.0,
1.0,1.0)" as has been done in Reference [5]. According 1o Reference [5], the exponents p, for
Xy, x2,x3 and xg are —-2.7625, ~1.5, —2.825 and —2.47835, respectively, and the residual constant
¢ is —0.0862. X' is also used as one of the matching points for TPA. Another matching points
required for TPA are selected as X*=(0.8,0.8,0.8,0.8)" for Dy, and X?=(1.3,1.3,1.3,1.3)" for
D, D; and Dy, respectively.

The relative errors of various methods are plotted in Figures 1(a)-1(d) for the four test cases.
These figures show that for this example, TANA-1 approach has the best accuracy among all
methods compared. This is due to the fact that the function to be approximated in this example
is almost separable and the form of which 1s almost the same as that of the assumed function
in TANA-1. The proposed TPA scheme also behaves well for this problem (with the maximum
relative error less than |1 per cent in case 1, 5 per cent in case 2, 7.17 per cent in case 3 and
7.9 per cent in case 4), and has almost the same accuracy as that of TANA-1 for all test points.
The accuracy of TPA is much better than that of linear and reciprocal approximations especially
when the value of step length is large.

Copyright @ 2001 John Wiley & Sons, Ltd. Int. S Numer. Meth Engng 2001; 50:869-884
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Figure |. Example I: (a) case 1; (b} case 2; (c) case 3; (d) case 4.

Example 2. This example is also taken from Reference [5]. The function to be approximated
is defined as

f{x)=180x; 4 20x; — 3.1xsy + 0.24x4 — 5xyxp + 3Tx1x3 + 8.7x2x4 — 3x3x4 — 0.1.&‘%

+0.001x3x3 + 95x,x3 — Blxgx] + x] — 6.2x3 + 0.48x3 +22x3 — 1.0 (25)

This example has been examined by employing the linear, reciprocal, TANA-1, and the proposed
TPA scheme, respectively, with the selections of D as Dy =(1,0,1,0)", D, =(0,1,0,1)" and
D;=(1,—1,1,—1)", respectively. For this example, the expanding points for all methods are
selected as X° = (0.8,0.8,0.8,0.8)". The matching point for TANA-1 is selected as X' = (1.0, 1.0,
1.0,1.0)7 as has been done in Reference [5]. Under this circumstance, the exponent indices p;
for TANA-1 are 1.6, —2.5255,3.2375 and 2.9625 for x;,x3,x3 and x4 [5]. The residual constant
for TANA-1 is ¢=—0.1183. The matching points of TPA for D, are X'=(12,1.2,1.2,1.2)7
and X? =(0.5,0.5,0.5,0.5)", respectively. The matching points of TPA for D, and D3 are X'=
(1.0,1.0,1.0,1.0)T and X? =(0.7,0.7,0.7,0.7)", respectively.

The relative errors of various methods with different choices of the direction vector D are plotted
in Figures 2(a)-2(d), respectively. For this highly non-linear example, all figures show that the
present TPA approach has higher accuracy in comparison with other methods and improves the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:869-884



COPYRIGHT 2007

INIST CNRS. Tous droits de propriate infellectuelie reserves. Reproduction, representaton et oiffus nierditas.
DESIGN OPTIMIZATION PROBLEMS 877
| | n
B B /
o . o __‘ = d ;
4 i—/‘ »x;_‘& E—::"":Rr 20 /
- » s *n 5 = .J
E / ‘“HL_‘ ~ L% \ e
/ Rt ]
o 204 / o & oo = Vopp
l." i i & S‘ ];/—" R E A S
| Pore TANA < -, o ‘\
i ¢ —Lin g aE=rve Ny T
E fa ...,1_0?3; 2 ! I—‘—Rec ‘\A\. . -
ﬁm_ ] [o=1010) | &4’_ / jrm—bew, =
i D=(0,10.1) .
T T 1 R | ¥ T T L T Y T T ¥ T LE T ’ T T ¥ T T 1
06 a4 o2 oo (¥ o4 oe (3] 10 12 il a4 oz oo az o4 06 o8 10 12
{a) Apha (h) Apta
€ 10
w ]
o \_ 5
.E it :__":_ .H’T““i j——-—-&m-&_a-—;_ v ‘E 1
_._,\1 B
] i -\, g
g 1 7 Rl g ]
& . I_& = Lin | \ 54 | e ‘"‘&
.g I_.a — 4— Rec | & 2 i REC »\__‘-.‘
! - | T
R B LB | =] |o=1010) .
i
- r T g T T 5y - T d T T i d
08 04 2 o a2 4 o8 ao oz 04 a8 o8 1 12 14
(c) Apha (d) Apha

Figure 2. Example 2: (a) case 1 (1), (b) casc 2; (c) case 3, (d) case | (2).

performance of linear and reciprocal approximations substantially. For the first two test cases,
TANA-I behaves well when 0 <2 <0.5, but when 2> 0.5, the relative error becomes large. When
x=1.0. TANA-1 has thc maximum error —13.8] per cent for D, and 24.54 per cent for D;,
respectively. On the other hand, the present TPA scheme performs well even when the test point
is far from the expanding point. When «= 1.0, its relative error is only 4.25 per cent for D,
and —4.88 per cent for D, respectively. This can be atuributed to the fact that TPA has utilized
more information of the original function than the two-point approximation schemes. Thus, the
trust region of the approximation function is extended. For case 3 of this problem, the results
show that TPA also behaves well when the design variables are changed along alternative opposite
directions. The maximum relative error of TPA is only 7.81 per cent when —0.5 <2 <0.5, whereas
the TANA-I. linear and reciprocal approximation approach have the maximum error of 28.8, —110
and —15.33 per cent, respectively.

Figure 2(d) shows the relative errors of different methods for Dy when x only takes the positive
value. For this case, the matching points for TPA are selected as X' =(1.0,1.0,1.0,1.0)T and
X*=(14,14,14,14)", respectively. The expanding and matching points for TANA-1 are the
same as those in the above two cases.

Figure 2(d) indicates that if the matching points of TPA are selected in the test direction, the
performance will be improved more. For this case, the relative error of TPA is only 3.07 per cent
when o= 1.2, whereas the TANA-I, linear and reciprocal approximation approach have the error
of —23.86, 8.29 and —26.55 per cent, respectively, when o= 1.2.

Copyright © 2001 John Wiley & Sons, Ltd.
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Figure 3. Example 3: (a) case 1; (b) casc 2; (c) case 3.

Example 3. This example which is also taken from Reference [5] is highly complex and non-
linear. The function to be approximated is defined as

= —3 0125 _ 1 =2 1.-03 -3 —1 -2 20 S
F(x)=10xx; ]xf,x6 91+ 18x; Txy “xyxaxs x?n‘ﬂ— 200, “x2x, xg “Xg + 25x7x3x, ‘e X, 2x7

(26)

This example has been examined by employing the linear, reciprocal, TANA-1, and the proposed
TPA scheme with the selections of D as Dy = (1, 11,1, 1,1, 1), Dy =(—-1,1,—-1,1,—1.1,— 1) and
D;=(1,0.1,0,1,0,1)7, respectively.

For this example, the expanding point for all methods is selected as X°=(1.1,1.1, 1.1, 1.1, 1.1,
1.1.1.1)", the matching points for TANA-1 and TPA are selected as X'=(1.0,1.0,1.0,1.0,1.0,
1.0, 1.0)T. Another matching point for TPA is selected as X* =(0.8,0.8,0.8,0.8,0.8,0.8.0.8)". Un-
der this circumstance, the exponent indices p; for seven variables for TANA-1 are 4.5,4.4.45,0.3,
0.318,—3.5,2.488 and 3.813 from Reference [5]. The remaining constant for TANA-1 1s
&= —0.0862.

The relative errors of various methods with different choices of the direction vector D are
plotted in Figures 3(a)-3(c), respectively. With reference to these figures, it is clear that for
this highly non-linear example, TPA behaves better than other approximation methods especially
when the design variables are changed along the same direction. As shown in Figure 3(a),
for Dy =(1.1,1,1,1.1,1)T, the relative error of TPA is only 4.86 per cent when x= 1.5, and

1.
1.
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Figure 4. Three bar truss. Figure 5. Example 4.

1041 per cent when x = —0.8, whereas TANA-1, linear and reciprocal approach have the error
of 110.52, —77.38 and —76.43 per cent, respectively, when x = 1.5, and have the error of —29.37,
-93.47 and —92.86 per cent, respectively, when x= —0.8. The numerical results obtained here
indicate that the proposed approximation scheme TPA has the ability of approximating the highly
non-linear function with relatively higher accuracy than the other approximation approaches. For
case 3 of this problem, the maximum relative error of TPA approach is —-25 per cent when
—0.5<x=0.5, whereas the TANA-I, linear and reciprocal approximation approach have the max-
imum error of 4564, —70.39 and --72.51 per cent, respectively.

Figure 3(b) shows that, when the design vanables are changed along alternative opposite direc-
ton. TPA also has the best accuracy among all of the compared approximation approaches and
improves the accuracy of linear and reciprocal approximation substantially.

4.2, Application to structurel optimization

In this part, the application of the proposed three point approximation approach will be demon-
strated by applying it to the solutions of structural optimization problems. Two kinds of truss
structural sizing optimization problems have been chosen for the demonstration of the effective-
ness of the present method. The constraints include stresses and displacements. The stress con-
straints are replaced by the equivalent internal force constraints in the implementation of the
computer program. The MOPB optimization tools {ibrary [10] was used to solve the resulting
approximate but explicit non-linear optimization problems. For the first three-iterations of struc-
tural optimization, a single-point approximation approach (linear or reciprocal approach) is used.
Then, the process of three-point approximation is used for the subsequent iterations. It is to be
noted that in the process of using the three-point approximation approach, the information of the
three points is available from the previous iterations and it is not necessary to carry out extra
calculations.

Fxample 4 (Three bar truss structure). The three-bar truss example shown in Figure 4 is taken
from Reference [7]. This example has also been used by Wang and Grandhi (1996) to illustrate the
effectiveness of the multi-point Hermite interpolation approach. The truss is designed for cross-
sectional areas 44,45 and 4¢(= 44) under stress and displacement constraints. The approximation
of member C's stress constraint function is examined. The constraint function using normalized

Copyright ©@ 2001 John Wiley & Sens, Ltd. Int. J. Numer. Meth, Engng 2001, 50:869-884
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Figure 6. Twenty bar truss structure.

variables can be written as

fix)=1+ \/3 - .

S 5
3x)  xz + 0.25x (27)

This example is examined by employing the linear, reciprocal. TANA, four-point Hermite inter-
polation and TPA methods with direction vector D = (0, 1)". The expanding point for all methods
is selected as X" =(1.0,1.0)". The matching point for TANA is X' =(1.5,1.5)". The four interpo-
lation points for Hermite interpolation approach are taken as X' =(1.5,1.5)", X?=(1.25.0.75)".
X*=(12,12)T and X*=(0.75,1.0), respectively. The matching points required for TPA are
selected as X! =(1.5,1.5)" and X =(0.8.0.7), respectively.

The absolute errors of various approximation methods are plotted in Figure 5. It should be
noted that TANA approximation approach has the same accuracy as reciprocal approximation
approach because its non-linear indices for all design variables are equal to —1. Figure 5 also
shows that, although it is very difficult to do better than the reciprocal approximation for this
problem, the present TPA scheme still behaves better than reciprocal approximation approach when
x<0. The accuracy of TPA is much better than that of linear and four-point Hermite interpolation
approach.

Example 5 (Twenty-bar truss structure). A 20-bar planar truss shown in Figure 6 1s studied
in this example. The truss model is taken from Reference [11]. The material propertics and nodal
loading are given as Young’s modulus £ =1.0F + 04, mass density p=0.1, allowable stresses
a, = =20, one load case with P, = Ps, =P, = P, = —100. The geometry data is listed in Table L.

The internal force of bar-17 was approximated by using linear, reciprocal and the proposed TPA
scheme with D, =(10+= 1,10+ -7, and Do =(2 %~ 1,2 1,2+ - 1.2+ 1, =L +1, 4% —1.5+ )7,
respectively.

Copyright € 2001 John Wiley & Sons. Ltd. Int. J. Numer. Meth. Engny 2001; 50:869-884
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Table 1. Geometry data for 20-bar structure.

i 2 3 4 5 6 7 8 9 10

x 0 —200 -76 —261 —-293 —435 —-617 —694 -~ 000 —1000
v 0 0 383 306 607 565 824 739 800 1000
204 x
.—.’. 3 -
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Figure 7. Example 5: (a) case |; (b) case 2.

Table 11. Ilteration histories of 20-bar truss with
stress constraints.

Iteration TPA Linear

number weight weight

] 322983 322983

2 9504 .41 9504 .41
3 9402.19 9402.19
4 9473.52 9473.52
S 9430.89 952797
6 0425.56 9504.77
7 9457.31
8 9451.72
S 9426.89

The expanding point for all methods are selected as X° =(6,3,4,6,10,15,5,7,9,10,5,16,7,5,4,
10,15,3,5,6)". The other two points required for TPA are selected as X' = X? + (1,-..,1)7 and
X2=X%—(1,..., 1), respectively.

The relative errors of various approximation methods are plotted in Figures 7(a) and 7(b). Both
figures show that TPA also works very well for this example. It is better than linear and reciprocal
approximation schemes for most of the test points.

In this example, the optimization of the 20-bar truss structure with stress constraints for all bars
15 also investigated. For this problem, the initial value and minimum size limit are taken as 50.0
and 0.01, respectively, for each design variable. In this example, the linear approximation approach
is used for the first three iterations of optimization. Iteration histories of structural weight with
50 per cent move limit are shown in Table II.  As Table Il shows, TPA approach needs only 6
iterations, whereas linear approximation approach requires 9 iterations to converge.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:869-884
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A

Figure 8. Ten bar truss structure.

Table L]. Iteration histories of 10-bar truss with
stress constraints.

[teration TPA Linear

number weight weight
1 4196.49 4196.49
2 2071.68 2071.68
3 2062.55 2062.55
4 2014.45 2014.45
§ 199221 1997 .84
6 1985.50 1988.86
7 1980.90 1984 .43
8 198222
9 1981.83
10 1980.45

Example 6 (Ten-bar truss structure). A 10-bar truss sizing optimization problem subjected to
stress constraints is considered. The 10-bar truss structure is shown in Figure 8. Geometrical and
material data are given as Young's modulus £ = 1.0E +04, mass density p = 0.1, allowable stresses
o, = + 20, one load case with P = — 100. The initial value and minimum size limit are taken as
10.0 and 0.01, respectively, for each design variable. In this example, for the first three iterations
of optimization, the linear approximation approach is used. Iteration histories of structural weight
with 50 per cent move limit are shown in Table Ill. The results show that TPA approach has
a better efficiency for this optimization problem than the linear approximation approach. Only 7
iterations are tequired to obtain the optimal solution. It should be pointed out that, the move limit
of the optimization process with TPA approximation approach should be reduced carefully during
iteration (20 per cent for all of the test examples). With inappropriate move limit, the optimization
solution may become unfeasible. The automatic and smart choice of the move limit is still an open
research topic.

Next, the same 10-bar truss was optimized under stress and displacement constraints on each
vertical degree of freedom. The displacement limit is 5.0. Iteration histories of structural weight
with 50 per cent move limit are shown in Table IV. In this example, the reciprocal approximation
approach is used for the first three iterations of optimization. The results show that TPA approach
can also lead to faster convergence to the optimum solution than the reciprocal approximation
approach. Only 8 iterations are required to reach the optimum, whereas reciprocal approximation
approach requires 13 itcrations to converge.

Copyright © 2001 John Wiley & Sons, Lid. int. J. Numer. Meth. Engng 2001; 50:869-884
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Table IV. lteration histones of 10-bar truss with
stress and displacement consiraints

[teration TPA Reciprocal
number weight weight
1 4196.49 4196.49
2 2948.16 2948.16
3 2525.50 2525.50
4 2435.34 243534
5 2149.42 2381.35
6 2176.59 2342.09
i 2239.05 2309.64
8 2200.11 2284.01
9 2264.57
10 2231.62
11 2220.56
12 2208.34
13

2202.31

5. CONCLUSION

In the present study, a newly developed three-point approximation scheme is proposed for obtaining
the high-quality approximation of highly non-linear functions involved in the problem of structural
optimization. This scheme is constructed by the linear combination of Taylor expansions in terms
of both original and reciprocal variables. The coefficients of the combination are determined by
utilizing both the function and gradient information of three different design points obtained during
the process of optimization. Based on this approach, the accuracy of the existing constraint ap-
proximation methods is improved. The numerical results for the solutions of structural optimization
problems indicate that the present method possesses the ability of obtaining the optimum design in
less optimization cycles. Thus, the computational efforts associated with the structural re-analyses
can be reduced. Another advantage of the present TPA approach is that the unknown coefficients
of the approximated function can be obtained in a closed form, and no iterative process is required
for the computation of these parameters.
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