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ABSTRACT - )

Many products are now routinely designed with the ajd of computer models.
Given the inputs—designable engineering parameters and parameters repre-
senting manufacturing-process conditions—the model generates the product’s
quality characteristics. The quality improvement problem is to choose the
designable engineering parameters such that the quality characteristics are
uniformly good in the presence of variability in processing conditions., This
article summarizes recent work to develop an efficient, systematic approach to
quality improvement via such computer models. Using relatively few runs of
the computationally expensive computer model, our approach builds approxi-
mating functions to be used during product-design optimization., We contrast
several approximation strategies. We also discuss how to choose a loss to opti-

mize when there are multiple, conflicting quality characteristics, Applications

in the design of electronic circuits are given.
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1. INTRODUCTION

Taguchi’s methods for improving products and processes (Taguchi and Wu
1979; Taguchi 1986) have created considerable interest in the statistical de-
sign of experiments as applied to engineering design. His parameter design
methodology searches for levels of easy to control engineering parameters that
make the product or process perform well in the presence of variability from
uncontrollable (or expensive to control) factors. Thus, quality is improved by
designing quality “into” the product or process, rather than by on-line inspec-
tion. Taguchi’s objective of finding such robust engineering designs has been
widely accepted, yet his statistical techniques for reaching this goal have not
won such universal acclaim.

This article is concerned with techniques for parameter design via com-
puter experiments. Many produéts are now routinely designed with the aid of
computer models. These models or “codes” complement or sometimes largely
replace physical experiments, so reducing the cost of c)g_perime'ntation and, per-
haps more importantly, speeding up product development. The design of elec-
tronic circuits is one important area where computer models are in widespread
use. Finite element analysis of mechanical components is another increasingly
common application area.

Although computer simulation is invariably less expensive than physical
experimentation, these codes can be computationally demanding. Taguchi’s
crossing of inmer and outer arrays in parameter design typically requires a
large experimental plan. (We shall refer to experimental plans rather than ex-
perimental designs to avoid confusion with the engineering design procedure.)
In his example of designing a Wheatstone bridge circuit via a mathematical

function (Taguchi 1986, Chapter 6), crossing two 36-run experimental plans
leads to 1296 runs. Of course, the mathematical model used is trivial, and a
run has virtually zero cost, but this just raises the question, “Why not sim-
ply plug the ultimate objective function into a numerical optimizer?” A more
realistic, though still modest, circuit simulation problem might take several

minutes on a workstation for one run of the simulator: 1296 runs al 2 minutes
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per run equals 43 hours of computing time. Finite-element codes are usually
much more expensive. Somewhat smaller crossed-array plans are no doubt
possible, but the crossing of arrays almost ensures that a fairly large, possibly
prohibitive, number of runs will be required.

Even though some input parameters may represent factors that vary ran-
domly in manufacturing, computer models of this type are typically determin-
istic. Running the code again with the same inputs will produce the same
outputs. Given the absence of random error, it is not obvious that meth-
ods for planning and analyzing physical experiments are relevant to computer
experiments. Nonetheless, the distinction is often ignored.

This article summarizes recent work by us and co-workers on parameter
design via computer experiments: Bernardo, Sacks, Welch, Liu, and Nazaret
(1989); Buck, Sacks, Welch, Liu, and Nazaret (1989); Welch, Yu, Kang, and
Sacks (1990); and Yu, Kang, Sacks, and Welch (1989). The methods we use
require relatively few runs of the simulation code. They can also incorporate
experimental planning and analysis strategies developgd spec.iﬂcally for de-
terministic computer experiments (Sacks, Welch, Mitchell, and Wynn, 1989).
The common theme is that we approximate the relationships between the qual-
ity characteristics (computer-model outputs) of interest and the code’s input
parameters. In circuit-design applications, the outputs might be the circuit’s
bandwidth and gain. Typical inputs include designable transistor dimensions
and various parameters to represent processing variation. In manufacturing,
the process-variation parameters are random, but they can be manipulated at
will during the simulation experiment. Thus, at this stage the distinction be-
tween controllable and uncontrollable inputs is ignored. A single plan for both
types of inputs typically reduces the number of runs relative to crossed-array
approaches. Then, we fit approximating functions to the data from the exper-
iment. These approximations predict each output as a function of all input
parameters. They act as computationally cheap surrogates for the simulatjon
code during engineering design optimization.

We have developed these techniques largely in response to electrical-

engineering applications like those described throughout this article, but the




A5 WUST ONRS T

.

480 WELCH AND SACKS

aj. oach seems to be quite general. [We should also mention that various qual-
ity improvement methods have been developed in the electrical-engineering
literature; see Brayton, Hachtel, and Sangiovanni-Vincentelli (1981) for in-
stance.]

After formulating the problem more rigorously in Section 2, we will give a
fuller account of our approach in Section 3. Modeling the computer code in
order to replace it by an approximating function is central to this approach;
in Section 4 we contrast some modeling strategies. Section 5 discusses experi-
mental planning of the runs used for model fitting. Section 6 deals with various
possible objective functions at the engineering-design optimization stage. In
particular, there are practical difficulties in minimizing squared-error loss (or
maximizing Taguchi’s signal-to-noise ratios) when there are multiple, conflict-
ing quality characteristics. Finally, Section 7 makes some concluding com-

ments.

2. FORMULATION OF THE PARAMETER DBSIGN
PROBLEM

Let y1,...,y, denote the g critical quality characteristics produced by the sim-
ulator. Each y is a function of d input parameters, the d-dimensional vector
z = (x1,-..,%4), all other inputs to the simulator being fixed. In simula-
tion, an input parameter may be varied to represent controllable (designable)
adjustment and/or uncontrollable (random) variation. To distinguish the con-
trollable and uncontrollable components, we write =; = ¢; + u;. A parameter
with no controllable adjustment has a fixed ¢;, which can be ignored. Similarly,
if there is no random variation, then w; = 0.

Ideally, we would be able to specify a loss function I(y1,...,y,) that mea-

sures the economic loss attached to a product with characteristics y1,..., ¥,

For fixed values of ¢ = (¢c1,...,¢c4), we can define an expected loss with respect

to the distribution f of u = (wq,...,ua):

L{e) = flﬁyl(c Fa),. .. Yqlc+u)]fu)du. (1)
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This expected loss is then minimized as a function of ¢. For example, if there
is a single quality characteristic y with target T, squared-error loss leads to
minimization of [[y(c + u) — T2 f(u) du.

There are obvious practical difficulties in specifying the loss function
I{(y1,...,9,) and the distribution f(u), and any method will have to face these
issues. Once the expected loss is specified, the problem of minimizing L(c)
in (1) is one of numerical optimization because Y1y.--,Yg are deterministic
functions. They are commonly solutions to differential equations and are usu-
ally very expensive to solve. Plugging L(c) into an optimizer is likely to require
a prohibitive number of function evaluations. Our approach, at least formally,

takes the above formulation, but optimizes through inexpensive predictors of
y;,(a:).

3. A SYSTEM FOR QUALITY IMPROVEMENT

Bernardo et al. (1989), Buck et al. (1989), Welch ef al. (1990), and Yu et
al. (1989) discussed strategies for optimization of electronic-circuit designs via
computer experiments. There are some differences amongst these methods,
which will be elaborated on in Sections 4 and 6, but there is an underlying
common theme. Based on a sequence of experiments with relatively few runs
of the simulator, we build computationally cheap approximating models of the
relationships between inputs and outputs. These models replace the simulator
for the optimization problem outlined above in Section 2. As we shall see,
the optimization may also be approached in a less formal way, via graphical

techniques. The generic strategy involves seven steps.
L. Postulate a model for each output yi(z) as a function of all inputs z.
As will be described in Section 4, possibilities include polynomial ap-

proximations and models treating each output as the realization of a

stochastic process.

2. Plan an initial experiment of n sets of vectors, and run the simulator

at these input vectors to generate the quality-characteristic outputs.
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. Use the data to fit the models (e.g., to estimate the unknown coefficients

in polynomial models), and build approximating functions, (). These
will be used to predict yx(z) at new z vectors. Before proceeding fur-
ther, the adequacy of the predictors should be assessed and, if necessary,
improved. For example, in Yu et al. (1989) the prediction of a CMOS
comparator circuit's gain was improved by separately modeling the gains

at the circuit’s two stages and then combining the two gains.

. Plot the predicted surfaces. Using the methods described in Section 4 it

is possible to decompose §(z) into main effects, two-factor interactions,
and so on. Particularly when there are conflicting objectives, visualiza-
tion of the input-output relationships can help to establish trade-offs,
Even if model assessment indicated that the predictors are of low accu-
racy, the plots may suggest promising subregions of the = space for the

next experiment.

. Estimate the expected-loss function and perform a tentative optimiza-

tion. We simply replace yi(c + u) in the expected loss (1) by the pre-
dictor §r(2), where £ = ¢ + u. This gives an estimated expected loss,
L(¢). Monte Carlo is a straightforward way to compute the integral in
the L(c) analog of (1); this is usually computationally feasible because

Uk(x) is cheap to compute. Denote the resulting “optimal” ¢ by ¢*.

. If necessary, reduce the size of the input space. If Step 3 indicated that

the predictor is not accurate enough yet, reduce the size of the = region

to a promising subregion based on the plots in Siep 4 and the tentative

optimization in Step 5, and return to Step 2 to collect new data on the

subregion. Otherwise continue to Step 7.

. Conduct a confirmation experiment to evaluate c* found in Step 5. A

single Monte-Carlo integration might be carried out to evaluate the ex-
pected loss L(c*) using (1) by running the computer code. Alternatively,

as described in Yu et al. (1989), a small computer experiment could be
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conducted, fixing ¢ at ¢* and only varying u. Again, this requires rela-
tively few simulator runs. Fixing ¢ makes the space of z — ¢* +u smaller,
and the predictor g is likely to be more accurate. This predictor can
then be used in (1) to estimate the expected loss. If the confirmation ex-
periment demonstrates that ¢* is unsatisfactory, then we have to return
to an earlier step. This might involve reducing the z space and collecting

more data, as outlined in Step 6.

Within this common framework, different classes of predictors g (z) and
various objective functions can be substituted in a modular way. The following

sections elaborate on these alternatives.

“

4. PREDICTION

| Building predictors based on fitting polynomial (e.g., second order) models

by least squares is well known and computationally stra‘:ightfor.ward, at least

when the dimension d of the z space is modest. If the output function yr(z) is i
simple, which is most likely to occur when the ranges are small, then accurate
predictions can result. For example, Welch et al. (1990) modeled the skew of
a clock-driver circuit as a function of six transistor widths and five levels of
manufacturing noise. A model with linear and quadratic terms for the widths,

a five-level qualitative factor for the manufacturing noise, and some two-factor

interactions led to a highly accurate predictor.
There are a number of philosophical and practical objections to least-

squares fitling of polynomials, however. The usual statistical assumptions

implicit in fitting a regression model by least squares and making inferences
are inappropriate. A deterministic output deviates from the regression model
according to systematic error and not the white-nojse error usually assumed.
Related to this is the fact that the least-squares predictor need not interpolate
the observed values of an output, which are known exactly. Last, and perhaps
most important, we have often found that polynomials are not flexible enough

to model complex input-output relationships. In an example described below,
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of
a second-order polynomial has 2 to 3 times the prediction error of the approach in
we now outline.

81

Modeling and prediction of deterministic outputs from computer codes was
discussed in Sacks, Schiller, and Welch (1989) and in Sacks, Welch, Mitchell,
i and Wynn (1989). These methods have some advantages relative to poly-

nomial models fitted by least squares. The resulting predictors are flexible, 4

they interpolate the data, and in 2 number of applications they have led to il

| more-accurate predictions. On the negative side, fitting these models is compu- t]

. tationally more expensive than least squares, though computationally efficient Y

algorithms are being developed by us and other teams. % i

This framework treats an output of interest, y(z), as a realization from a t A

stochastic process or random function on z: E; ¢l

Y(2) = B+ 2(2)- (2) e

. t

The unknown constant 3 can be replaced by a regression model (e.g., low-order L fi
polynomial) in z, but we have found in applications that thig usually offers I.

little advantage. The random process Z(z) is assumed to have mean zero and : _ d

covariance i ’@?‘ 5|

o*R(w,z) (3) P IJ:

between Z(w) and Z(z) at two vector-valued inputs w and z. Here, o is the ._ a

process variance and R(w,z) is the correlation function. The idea is that a !

deterministic output, though actually generated quite differently, may resemble ; 4

a sample path of a (suitably chosen) stochastic process Z(z). l. 5 q

l’ The correlation R(w,z) should reflect the characteristics of the computer- r I

i code output: a correlation function with some derivatives would be appropriate I[ L

i for a smoothly varying output, for instance. The circuit simulation examples | i
L in Bernardo et al. (1989) and Buck et al. (1989) employed I

R(w, ) = II§_, exp(—6;|w; — ;™) (4) | Z

where 6; > 0 and 0 < p; < 2. This family is a product of stationary one- q

dimensional correlations. The case p1 = -+ = Pa = 2 gives a process with {
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infinitely differentiable paths (mean square sense) and is useful when the re-
sponse is analytic.

Maximum likelihood estimation of the unknown parameters in this model—
Bin (2), ¢®in (3), and 6y,...,64 and py,...,pg in (4)—was outlined by Sacks,
Welch, Mitchell, and Wynn (1989).

This model leads to a best linear unbiased predictor (BLUP) which exploits
the correlations between the observed values of y in the experimental plan and
the (random) Y(z) at an untried @. According to the correlation function (4),
Y (z) will have the largest correlations with those outputs at points close to =
in the experimental plan. Thus, the predictor, which is a linear combination
of the observed outputs, t€nds to assign greater weight to nearby observations
than those far away. Ithtums out the BLUP is a generalized least squares
fit of B (or the regression-type trend) in model (2), plus an interpolation of
the residuals. Again, the formal derivation and computational details can be
found in Sacks, Welch, Mitchell, and Wynn (1989). ,

In quality improvement applications, the vector of inputs, z, is often high
dimensional. For instance, the voltage-shifter example in Buck et al, (1989)
started out with 23 input parameters. Expert engineering advice enabled a
reduction to 14 factors, but, in general, it is important to reduce dimension
and identify active factors on the basis of data. Welch, Buck, Sacks, Wynn,
Mitchell, and Morris (1989) described such a screening algorithm based on
the stochastic-process model (2). In two examples, 14-dimensional and 20-
dimensional input vectors were reduced to the important factors, and non-
linear and interaction effects were discovered, with just 30-75 runs of the code.
Moreover, the same data led to a useful predictor without further runs, an
important consideration if the code is computationally complex.

A recent application in which we have been involved illustrates the advan-
tages of this predictor relative to fitting polynomials by least squares. There
are at least 10 outputs of varying degrees of interest in the example. We
concentrate here on one output, a time delay. This delay should not exceed

6.7 ns (nanoseconds), with smaller delays being even better. There are 11
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inputs, comprising various device dimensions, capacitances, and so on. Ap- | T
plying a modified version of the maximum-likelihood algorithm in Welch et al.
(1989) to fit the stochastic-process model (2) indicates that =5, =g, and z,, are |

. . av

inactive. 5.

We may assess the accuracy of the resulting best linear unbiased predictor "%

i by cross validation. Let z(*) denote the z vector for run i of the experiment, f th
and let §_;(z()) be the predictor of y(x{)) based on all the data ezcept the i &
observation y(z(*)). Then we can define an empirical root mean squared error
(ERMSE) at the 75 observations by %

. an
{7 Sli(e) — () 9
For the time-delay output the ERMSE is about 0.047 ns, relative to a dafa _' w
range of about 5.1 to 10.7 ns.  * : . pl
| This predictor may be compared with a polynomial fitted by least squares. I pr
With 75 runs it is not possible to fit a full second-order modc}, so we initially
| fit a first-order model and apply backward elimination until £ > 2 for all ¢ i 3€‘f di:
statistics. This identifies z3, z4, &7, =g, zg, and z;;. A second-order model in | sh
these inputs, followed by further backward elimination, leads to a model with i ide
| 14 terms. Its ERMSE from (5) is 0.12 ns, 2 to 3 times that of the predictor ha
i based on the stochastic-process model (2). The ERMSE from the regression | ms
i model is too large to permit its use in optimization with any confidence. In fact, : ple
the regression model erroneously predicts that the “optimal” design (found ' {z
P :i: using the stochastic-process predictor) would violate the constraint of 6.7 ns T
f on the delay time by a nontrivial margin. F otl
To gain insight into the relationships between the important inputs and | wh
the responses we like to visualize the fitted model. Specifically, we: | . of
1. Decompose each response function y(z) into an overall average, main l est
i effects, and two-factor interactions. i i z3
2. Estimate these effects by replacing the unknown y(z) by §(=z). |I ::1

3. Plot the estimated effects. !
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This decomposition was suggested by Sacks, Welch, Mitchell, and Wynn (1989)
and exploited graphically by Welch et al. (1989). Thus, the estimated overall

average of the response y(z) is

jio = [ (@), de,

the estimated main effect of input factor z; (averaged over the other factors)

is the function
is(2) = [ §(2)Mhgidar — fi,

and the estimated interaction effect of z; and z; is the function
fiij(zi,z;) = /ﬁ(x)nh#.jd% — fi(®:) — fij(25) — fio.

We do not consider higher order interactions because of obvious difficulties in
plotting. With product correlation functions like (4) the integration is just a
product of one-dimensional integrals.

We illustrate these visualization techniques using the time-delay example

discussed earlier in this section and the stochastic-process model (2). Figure 1

shows the estimated main effects of Z1y...yTq, Tg, T1, Ts, and 1, the factors
identified as having some effect. In these plots the estimated overall mean, fio,
has been added in. It is apparent that z,, zs, and zy; have the most important
main effects; the remaining factors produce a blur of small effects. Contour

plots of the estimated interactions, frij(zs,2;5), for all pairs x; and z; from

{1,...,%4,%6,27, 26,211} show that the estimated interaction effect of z; and
11 is important. This estimated interaction has contours as large as +0.2; all
other interactions are apparently unimportant. As in physical experiments,
when a two-factor interaction is detected it is useful to look at the joint effect
of the two factors—the sum of the two main effects and the interaction. It is
estimated here by integrating the predictor with respect to all factors except
z3 and z,;. Figure 2 shows the contour plot. With pictures like these for all
important outputs, the engineer can see the input-output relationships and

identify any trade-offs between conflicting objectives.
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FIG. 1: Estimated main effects of z1,...,%4, %6, T7, T, and z,; (plotting

symbols 1,...,4, 6, 7, 8, and E, respectively) on time delay (ns).

5. PLANNING OF EXPERIMENTS

So far we have avoided the issue of how to choose the experimental plan (Step 2
in Section 3). In the absence of random error, criteria like D optimality (e.g.,
St. John and Draper 1975) are inappropriate. Welch et al. (1990) optimized

the experimental plan using an integrated mean squared error criterion based

on systematic departure from an assumed polynomial model. Sacks, Schiller,

and Welch (1989) used a similar criterion but based on the predictor from the
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|
.

FIG. 2: Estimated joint effect of 4 and ;, on time delay (ns).

stochastic-process model (2) rather than a polynomial fitted by least squares.
Many quality improvement computer experiments are too large for optimal
planning of experiments in a reasonable amount of computing time, however.
The example in Buck et al. (1989) has 14 dimensions and 75 runs at the first
stage. Finding an optimal design requires optimization over 14 x 75 = 1050
coordinates, an expensive undertaking.

We now typically use Latin hypercube experimental plans (McKay,

Conover, and Beckman 1979), which have some attractive properties for com-
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puter experiments. First, they are simple to generate, even for many input
variables. Secondly, they cover the experimental region fairly uniformly. Work
going back to Box and Draper (1959) on fitting polynomials suggests that
uniform coverage is desirable when systematic error is important. Similarly,

optimal experiments for the predictor from the stochastic-process model (2)

tend to infiltrate the entire space, at least for low-dimensional = where such
plans can be computed. Thirdly, if only a few factors turn out to be impor-
tant, the experimental plan projected down onto these factors is still a Latin
hypercube, and so is still fairly uniform.

The question of sample size is also difficult. Ongoing work is investigating
the relationship between the number of runs, dimension of z, and prediction
accuracy. At present, \to keep down the computational cost from running the
simulator and from fitting the correlation parameters in the model (2), we
typically take 50~100 runs for each experiment in the sequential strategy. For
a high-dimensicnal = space, a first experiment of this size will often result in
inaccurate prediction and a non-definitive optimization in Step'5 of Section 3.
We then rely on the sequential reduction of the experimental region (Step 6) to
improve accuracy—as the region shrinks, the response relationship will usually

become less complex and easier to predict.

6. OPTIMIZATION CRITERIA

We now consider some alternatives for the loss (1) and its estimate optimized
in Step 5 of Section 3.

6.1. Quadratic loss

Taguchi (1986, Chapter 2) advocated minimizing the mean squared deviation
of a quality characteristic from its target. With a single characteristic of inter-
est, the loss function in Step 5 of our strategy in Section 3 is easy to implement:
see the examples in Welch et al. (1990) and Bernardo et al. (1989).
Reconciling quadratic losses from several quality characteristics is not so

simple, however. The objective function is inevitably problem specific, not in
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itself undesirable, but specifying the trade-offs raises obvious practical difficul-
ties.

In the design of a voltage shifter circuit, Buck et al. (1989) considered
and built predictors for four characteristics—bandwidth, gain, voltage shift,
and (indirectly) ripple—which we denote by ys, ya, yv, and yr. Bandwidth
and gain are larger the better characteristics, the voltage shift has a target
of 5 V, and ripple is smaller the better. For a given nominal design ¢ (the
controllable component of z), they computed ¥p(c) and gg(c). (These are
roughly equivalent to the means with respect to the distribution of u, the
uncontrollable component of z.) They also estimated the variances of the

bandwidth and the gain around their nominal values:

sple) = f[ﬁa(c +u) - g(c)]* f(u) du
and
sg(e) = f[ﬁ’c(c-i u) — ge(c))* f(u) du.

Similarly, the variability of the vollage shift around the target of 5 V
predicted by

was

sy(c) = f[?:’v(t +u) — 5 f(u) du.

Then, by maximizing

8(c) + Ja(c) — sp(c) — se(c)

subject to

31/((‘-) < 0.1

and
!;‘R(C) S 0.01,

with respect to ¢, they attempted to make the average bandwidth and gain
large while penalizing variability of these quantities and controlling voltage
shift and ripple. Though this combines the outputs in an ad hoc way, op-

timization led to an engineering design with consistently good outputs, the

ultimate test.
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6.2. Yield

The yield is defined as the proportion of product satisfying constraints on
the quality characteristics, usually simple lower and/or upper bounds on each
characteristic. Thus, yield maximization provides a much more straightforward
way of dealing with several responses. On the negative side, it does not reward
reduction in variability once the constraints are met.

Maximizing the yield is equivalent to minimizing the expected loss (1) if
we define the loss as {(y1,...,9,) = 1 if at least one output does not satisfy its
constraint, and 0 otherwise. Thus, yield maximization is easy to implement
within our framework; see Yu et al. (1989) for two examples.

Estimating the yleld by substituting gx(z) for yx(z), the approach taken by
Yu et al. (1989), can sometimes lead to substantial error even if the predictors
are fairly good. Consider a singl:z response y(z) = y(c+ u) that is satisfactory
if it exceeds the bound b and the marginal yield with respect to this output.
If §(z) is close to b, then even a small error in §(z}) can lead to predicting
y(z) > b when, in fact, y(z) < b, or vice versa.

Assigning a loss of 0 or 1 ignores uncertainty of prediction. If uncertainty
is taken into account, then a prediction very close to the boundary might be
assigned a loss of 0.5 to indicate that we really do not know which side of b
the true output will fall. A formalization of this idea is as follows. Denote the
standard error attached to §(z) by s[§(x)], and assume that g(z) has a normal

distribution with mean y(z) and standard deviation s[§(z)]. Then estimate

the loss [[y(z)] by b (=)
— gz
‘I’( ()] ) : "

where ®(a) is the probability that a standard normal random variable is less
than a. These probabilities are then averaged (rather than 0’s and 1’s) in the
computation of the expected loss (1).

The stochastic process model outlined in Section 4 leads to a predictor for

which a standard error can be computed. Furthermore, as illustrated by a

circuit-simulation example in Sacks, Welch, Mitchell, and Wynn (1989), these
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. ' standard errors often give a realistic idea of the magnitude of the actual error,
: and the predictors §(x) are often found to be approximately normal.

We now give some results from applying this method to the voltage-shifter
circuit in Buck et al. (1989). (As described in Section 6.1, yield was not
the objective in their study.) For simplicity, consider the marginal yield with
respect to the voltage shift only. We take upper and lower bounds of 4.85 V
and 5.15 V, and we use 100 Monte Carlo samples from the noise distribution to
estimate the proportion of circuits meeting these bounds. Estimating the loss
using ![j(z)] gave an estimated yield of 91% at the “optimal” circuit design.
Using (6) gave an estimated yield of 80.5%, much closer to the true yield of
79% obtained by running the circuit simulator at the same 100 samples. Note
that Monte Carlo error\is irrelevant when comparing these figures as they are

all based on the same samples.

7. CONCLUDING REMARKS

We have summarized work on the development of a system for the design of

products via computer models. These methods have already proved useful in E

a number of integrated-circuit applications.

! We are working on a software implementation of this system. This tool
: will help the engineer to: initially identify the important input parameters;
[0 8 build approximating models; visualize relationships; and proceed sequentially
! to a good design. These are complex problems, and complete automation of
. this process is unrealistic. Nonetheless, many of the statistical details can be

|: hidden, allowing the engineer to concentrate on problem formulation, trade-
' offs, and so on.
I
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