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The ùse ol constrâint âpproxinatioDs is rc.ognizrd as r pdmary m.âtrs of a.hieviû8 comÈrrtiotrd
efficiency iû sru..tural opiimization. E sting appro natior mcthodr irc balcd upon the vrluc of th.
coDstraht function and its dêlivativê,s ât a single point. the presênt papû êxplord lhc û!ê of
,pprorimârions bâl€d upon th€ value of the constrainl sîd its dcrivati\€ at two points. S.vcrrl
candidatc approximations are sugS6tcd and t6tcd for landomty g.Dcratcd ritioml coosùdnt filtrc-
tions. S€v€nl of thc apFoximâtions provc to tÊ supêrior to thc ainglc-point âpprorimations.

f. Iûû,oductioù

One of the major obstâcles to the widespread us€ of automated strùctual design (structural
optimization) procedures is the ûe€d for large computâtioml resour@s to perfom repeated
analyses of the sûucture throughout the design proc€ss. In the mid.seventies Schmit and
coworkers [1,2] ptopos€d the ùse of approximate analysis techniques as a way of overcoming
this obstacle. Ovei lhe past few yean the ùs€ of approximations iû structwal optimizâtion has
become more and more common. The popularity of the ideâ \f,a8 underscored in a recent
international symposium on structural optimization [13], where a large number of papen
[4-10] employed approximation tcchniques.

Some approximatior t€chûiques ar€ global in nature. They seek 10 approximate structural
behavior ir the eûtirc design space or a large part of it. This is donc by enployirg silrplifred
structural models [11], by employing reduced basis techniques [2], or by sampling the design
space aûd using multiple regressioo te.hniques to cuwe-ût thes€ poiûts with â siûpte
functional rcpreseûtâtion [13]. However, more populat are local approximatior techniques
which rely on the derivative$ of the rcspons€ furction at a dcsign point to obtain an
approxiEatioû which is valid in the rcighborhood of that d€iign point. One reason for the
popularity of such techoiques is that th€ derivaûves of the respon8€ atc usually requited for
the direclion se€kilg procedue i|r the optiEization elgorithm, Thus, the âpproxiDatiots can
be obtained at very little extra cgmputatioDal cost by ùsitrg these dcrivatives.

One obvious local approxiBation bas€d on first-order dedvatives is â firit-o.det Taylor
selies (i.e. â li[ear approximation). Hovever, often the accùracy of such an approximatioû is
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acceptable only for relatively small changes in the desigû parameters. In most structuÉl design
ptoblems a better approximatioa may be obtained by using a linear expansion in tbe
reciprocals of the vaiiables [1e-16] and this approxi$ation is now widely used. Other
Àpproximations which arc in ùs€ are rational function approximations [17,18] and a convex
"cooservative" approximation [19,20], which is a hybrid linear/reciprocal approximation that
is biased to overestimate the ûiticality of constraint fuoctions. Most of these approximations
utilize onry first dedvatives, however soûe work [21] has been done with second deriaatives.

All of the above techniques ùse approximations based on a single design point. As the
structure is being resized nev approximâtiors are constructed at new design points. This
praclica is wasteful b€cause the hformation from previous design poifis is discarded aod is nol
used to improve later approt{mations. One reaçon for the currcnt prâctice of usitg only
single-poiirt approximations is the large number of vâiables. There is very little theoletical
work on approximating a function of many variables to fit data at â small numb€r of points. tn
fact, most of the work is on apptoximatitg a tulction of a small number ol variables based on
data at a large rumber of points, The prcsett lrork considers approximations to a functiot of
man!' variables based on th€ value of the furction and its derivatives at two points. seleral
candidate âpprcxiûations are çxplorcd and the rcsults for the more successful candidates ate
presented.

2. Approxidation melhods

Several two-poiût approximation methods \terc developed and compared agahst the two
mosr commoûly used orle-point approximations. Additionally, two three-Point methods were
derived and compared with the two-point approximations. These oire- ând multipoint approxi-
marioûs are described below, The points, where the data is given, arc denoted XD Xl alld X3
*irh components -rlt x zi, xti, i = 1, . .. , ,t. The functioD to be approxirnated is 8(X), ând the
one-point approximations use its valùe and its derivatives at Xr. Th€ two-point approdma-
raons Ùse the value of the function and its de vatives at two points, and the three-point
approximations use the data at three points.

:. 1. Lhear approximatiotl

This is the first-order Taylor"sedes expaûsion:

s,\x)= g(x,)+i1x,- r,, '1ff 1x,1. (1)

2.2. Reciprocol approxit utiotr
'This approxfulation is the frrst-order Taylol-sefies expatrsiotr id the leciprocâls of the

variables ) i  = 1/t, ,  i=1,... ,n. Wiit ten in terms of the orighal vadables, t i ,

+ /rà\  ag , -  ,s,(x)=8{x:)->(r , - . r : , ) ( : l ; \  , t .  (2)
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2.3. Modified reciprocol approxinution

The modified reciprccal approximation [1?] is

3 (r., +.rr,) ôS , - ,
s^(X) = s(X>) + ) (r, -t,.) ;-- 

- 

(r") .
\ tn r  xt t  I tx l

t-!- u,, = 9,x.i= ('^, : ', ' \ '  9 rr.,.
dx, \ " r /  a.r .  \ " t '  \xût+ xt , l  ôxt \"" '

or
x2, - q,xn

.  
,_,= (?,  1)  .

n?=ff<x,>f ff<x,1.

E1

(3)

Note that for ,-i = 0 we get the rcciprocal approximation, and for r-,-"+æ ,r,g ggt the liûear
âpproximation. The values of r-, are assumed to be selected on the basis of expedencæ in [1?1,
but now they can be selected to match the derivatives at Xr (note tbaf the value of the
fu[ction and its derivatives at X, are datched by g- for any values of rr). That is

When the ûtio of the derivatves is ûegative, it is an indication that tbe derivatives at Xl
cannot be matched. In thât case r-i is set to a very large oumber, so that the linear
apploximation is used for the ith variable.

2.4. Quasi-NewtoL apprctirnation

The quasi-Newton approximaton is written as:

. . . .  ê,  .ôs. . . .  ,€êg' IX\= glx* l+ zQ,-r* ' ) r r - (x*)  t  )  à,à,or, ,G'-  xr , \ (x,-xr , ) ,  (7)

where for a two-poift approdmation ,k = 2 and for a three.point approximation ,t = 3. The
malrir Ar is the quasi-Ne*ton approximation to the HessiÂn mâtrix of g. Three populai
updâte formulae for .4& were tried.

(i) Iûverse Broyden-Fletcher-Goldfarb-Shatmo (BFGS) update:

(4)

(5)

(6)

(8)

(e)

A**r= A*-

where

Ai*P'A.k , Yryi-flA,P; - 4P,'
Y*=Vg(X*. , )  Vg(X*),  Pr= Xr*,-  Xr,  Ao=0.

Note.that unlikc usage in optimization there is ûo need for a positive-defnite A, atrd A0 = 0 is
a logical choice in the âbsence of additional knovrledse.

(ii) BFGS update:

/  vP' \  t  Pvt \  vvl
A =l I - : - ! : - !1,  I r - : - l j l la jL: l' -^- '  \ -  y l&/ . . r \ "  Y, ,Prt  y ipr (10)
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(iit Davidon-Fletche.-Powell (DFP) ûpdate:

lYt  -  ArPkl \Y^- A.1I  + A^nr,.= -- 
V- e&t:p^

Only the DFP update gave reasonable rcsults'

2.5. Two-poiat Prcieclion method

The method is based on a Foiection of the point X on the line connecting Xr aad X, (see

fie.--if. Th. fùnction 8(X) is hrsr approximated by a cubic Hermite pol)'nomral at the

piË1""iion point, P, anJthen tinearly extnpolated to X The Fojection point P is gIvetr as:

P=Xt+t(Xz-X),
wherc

t = 6 - x)'(x, * x,)/llx, * x,ll".

The oualitv of the approximation was found to be good only fo' iûterpolation (that is

d= eËriL tfttt if Ë'hom (13) was larget than one or smallet than zero' il was set to the

resD€ctive limit of zero or one The apptoximation at P is theû wntlen as:

,,1xy = s,1ry * ! [(r - 6) # 6l + ë uv,tal] G, -r,1,

s,(P) = N'(E)a(x,) + N'(€)a' + &(f )s(x,) + N"(f)d, '

(11)

(12)

(13)

( 14)

(15)

Fig. 1. fto-poiûl Pmi..rior lnetM.
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the N,(O are the Hermite interpolatioo polynooials,

N,( =r-3t '+2t '  ,  N,( t )= t -u 'z + t1 ,

N,(0=3t '  -  2C" '
and

N.(E) = -{ '  + { '  ,

d,= (X,-  Xt \ 'vs lxt \  ,  i=r ,2.

eo(x) = eo(P) + (x- P)'vs(P) .

xt x,

Fig. 2. Thrê.-point projection method.

and the three unkûown coeftcients are found from a least-square frt using the value of the
functioû and its derivatives ât poitrts Xl and Xr.

Once (18) is used to appràximate t(P), the gadient vectot V8(P).is. found by linear
interpolation in the s-l plani using Vg(X,), Vg(X,)' and Vg(Xr). Finafly, g(X) is approximated
as

293

(16)

(1?)

2.6. Thrce-poitrt ploiection method

The method is based on a p.ojection of the poiot X onto the plane containing the points Xl,
x} and x3, where the dÂta i; given (see Fig. 2). The tunctior 8(X) is û.sl.approximated by a
quaaratlc iotynomiat at the prôj€ctiotl point, P, atrd thefl lineady extrapolated to x A local
coordinate system (s, r) is deûoed in the plane (see Fig. 2)

The côrnputation bé8ins by calculating two utrit vectors e" and e, in th€ plâne and the

calculâtior àf th" d"riu"ti""t ailôs arld âgtat at poitts Xr, Xz' 
^ 

d Xv In the plane the
function is approximated as:

âo Ae
ge(s, r) = g(x]) r i (r - si) * 

;i 
(t - rr) + rdr'(r - si)" - a,!(s - rlXr - r.)

+ td22( - tr)'1 , (18)

( 1e)
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2.7. Expotential approrimtttiotr

The exponential approximation is based on dividing th€ variables into two groups: those
thât have constant sign derivatives and those that alternate in sign. That is,

iet ,  f t#6)#s)--0.

ier? i#,(x,)#,(x,)<-.

A general function which replicates the behavior of the derivatives is

a(xl=cexp-[) o, ' !  + 2"71',- a,f f

The coefûcients at, 9r, 7i, and ô, are calculated to match the derivatives at Xl and X} For

j € .lr n'e g€t two equations,

(20)

(21)

(22\

(26)

# (x,)-- oili6,)P' '8(x,\; ff lx,): *,9,G"1u;'t(x,) '

which ]relds

9i= t+ ln(.r,,i xr,)
and

",=-ff{x)rn/,1 'e{x,)

Similarly, for i € Jr, the equations

f 6,) = -zs<x'\t,t,,,- ù ' ff {x,) = -zs{x,)t,<'", - a,)

are solved to Yield

,re{x) ff 6)- ""tetx) ff <x,l

s6,1ff6)-s1x,lff,6,1
_ =(xt l

1,=Ts{rl$;q

(x,)s(x,)f # 6,\,.)',\).  Iar
lnl 

-- {23)

(24\

(25)

(n\
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Findly, the constatt c is calculated to match the fullction value at X}

c: Êts(x) ,
where

n=*o- [ I .,,!; - .2 t,t,,, - a,f].
ter,

8(,r) = a(x) tb(x) 'whele
a(X) = ) r,p,

i - l
and

ô1x; = )  1s, ,x l  +s, , r , )+I . ) . r , .x,r . .

D5

3. Te6t p|lcedùre

3.1. T.st functiohs
The displac€ments of a linear elastic structure may be fourd by solving a system of linear

equations gen€Iated by a fnite el9ment model. The €lements of the matrix of the equations
(the stiftress matrir) are rypicâlly polynomials of the design variables. Therefore the displace-
merts are rational functions of the design variables. The test tuirctions selected fo! evaluatiûg
the various approximatioû are, thelefore, chosen to be simple ratotral functioos with ratrdom
coefîcients. h choosing the form of the Étional functiotr two properties of displacement
functioN were considered. First, for most stluctural optimizatioû problems the displacemeûts
are finite for positive values of the design parameters. Second, when the design parameters are
cross-sectiolal ateas of bals or thicknesses of membmne elements, a simple scaling relation
holds. When all the design paiameters are multiplied by a facto!, the resùlting displac€merts
ard stresses are reduced by the sâmê faÇtor.

To âchieve thc above charactelistics the test function B(X) is chosen to be in the form

(28)

(2e)

(30)

(31)

(32)

The coefficients rll Jrj, .r.r, and wr* are randomly genemted ùsitg a two-stage process. First, a
nodom number is selected for each coefûcient to detelmine whether it is zero or not. The
probabiliry of being nonzero is denoted as p1, p2, pt and pr. for sr,, sr,, sr,, atd w,*,
respcctively. Se.o[d, if the coefôcient is to be ronzelo, its value is seiectdd by a randrim
variableuûiformlydistributeditranifierval(0,d,),r-1,...,4,wherei=1,2,3correspond
to si, atrd i = 4 to lrr*. Note that for any choice of the random coelficients g(X) has the desired
s€alng propenres.

3.2. Test points

Beside test functions it is also necessary to select a sequence of desigB points. Two
p.ocedures arc used fo! this purpos€. The filst prccedure is completely random with each
compoûent rj selected as a udfomdy distributed random numbet in the intewal (0, d). The
second procedu.e seeks to imitate the seqùence of points gererated by an optimization
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procedure. It assumes that the desigl proceeds ir a certain direction with rardom oscillatiors
about thât direction. ThÈ procedure follo*s five step,s, requiring the generation of variables.
In all cases below, each random variable has â unifom distribùtioo in the indicated interval.
The step€ of the procedure are as follows:

Step 1, Arr initial point Xr is s€lected with rrl i= 1,...,4, a random number in [0,1]_
Step 2. A direction vector Uis chos€n with each component a random number in {0,1] and

than U is nomalized so that llt7ll = 1.
St? 3. A sequence of rn-1 random numtren À,, i=L...,m- 1, each in [0,d] is

generated, It is used to define 
''t 

points X,, movirg along the given direction

Srep 4. Rardom pertùbations normal to the dircciion of motion âre generated by
g€nentirganotherrandomdirec{ion%,t=1,...,m-1,asinStep2,makingilorthogonal
to t atrd nonalizing its length to 1.

Step 5. T\e fiîal design vector is obtained by âdding yr to 4r as

X"t= Xt,  Xp,= xpt ,  t t+^, . .U, i=2. . . . .m. (33)

Xo= Xo** a*V* k=2,. . , ,m, (34)

whe.e d* is a mndoû numb€r in [0, r].

The m test points which are generâted by either procedure were ùsed to gene.ate m-2
app.oximatiors, The value of 8(X) et Xk, k = 3, . . . , ,r1, is apprcximated by the three-point
approximations based on the function and its derivatives at Xk_\, Xù_., and X"_r. Two-
point approximatiors used data at Xr-1 and Xr-r, and single-point apprcximatioN utilized the
data at X*-r.

4, n€sDlts ùd dircurdot

4.1. One- and two-point approrintations

The constaûts ùsed for the random geBeratiot of the function and the test points lvere the
follorviûgi di, i = 1, . . - ,4,25., û., æ., n. for the ôr$t gene.ation scheme, 10., 10., 10,, 10.
for the second getremtior scheme; p,=0.8, i=1,2,3; pn=0.8; d= 8; r= 1,0, Ninety test
points were geDerated by each procedùe and eighty-eight apploximations were generated.
Thes€ are compared on the basis of avenge relative ellor, maximum relative erlor, and the
number of times (out of 88) that a given approxiûation wa! the best of all approximations.

The single- and two-poiût approximations were frrst compared lor the completely random
test poirts. Table 1 preserts the reêults for the linear, reciprocal, modified, quâsi-Newton
(DFP updale) ad projection approximations as a functioû of the numbe. of design variables.
Tbe plojectiol two-point âpprorimation had the best perfoamance with aû aveÈge error

-AOVo lowet thaD that of the linear approximatior which was the next best. The other
approxi$ations had very large maximùm errors which indic{ted that their poor performatce
may b€ due to a small number of point$ nith larg€ errors, Thetefore it was d€cided to cherk
how much the perfomance will be affccted if the permissible deviation from the lireâl
apprcximation vas liûrit€d.
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Enors for siogl€- â.d rçD.point âlproxiû.tions lor raûdom qlpoint sÊqulnce (sv€rs8e
rehtive error, marimum rclstive eûor, and nÛmb€r of lim€s eac.ù apploximation wa! th€
b€st onc)

Numbcr of
variablês Uæâr

a7

R€ciprocd Modiûcd Quasi-Nc$,ton hojection

10

m

40

o.?49
1.863

15

0.0935
0.333

16

0.0465
0.:262

19

0.0174
0.0499

t4

0.680
344.3

2.656
u.53
5

3.121
14.41
2

1.681
v.49
0

0.444
4.tn

27

a.n1
3.533

13

2.574
t6't.l
10

0.118
1.989
8

0.559
18.15
5

0.285
9.06?

0.118
1.980

26

0.û280
o.n1

3l

0.183
1.561

29

0.0543
n.T;2

0.0354
0,(}}75

0.01æ
0.0665

The apprcximatioos were limited to 307o deviation from the linear approximatior, That is

o,*o]aSffJf =r:, (3s)

wherc & reprcsents C,, C^, gq, or gr. The results with these coûected apprcximations are
given in Table 2. It is seeî thal the quasi-Newton apprcximation is greatly imFoved afld has
avemgç elTors which arc up to 12qo b, er ihar thos€ of the linear approrimaton. The

Tàbl. 2
E rors for corrcct€d singlè rM tûo-point approximations for râtrdom go-point scquenc.
(8rcrrgc rèlative error, marimuûl rêlaùvc €rlot, ard rumb€r of times each approrimation
93s ùr bcat on€)

Numbcl of
va.iables Lirear R€ciprocal Modificd Quâsi-Newtotr Prcjection

10

m

o.249
1.863
9

0.0935
0.333

16

0.0465
o.262

15

0.0174
0.049

11

0.289
2-255

19

0.117
0.425
9

0.0637
0.158

l l

0.tzt3
0.0518
E

o.244
t.471

l7

0.$43
o.212

15

0.0546
0.459

t7

0.0193
0.0810

19

0.219
1.471

n
0.0822
0.323

0.0465
0.459

0.0171
0.0815

30

0.26
t.411

o.u725
0.x4

36

0.03E4
0.0978

32

0.0141
0.042t

iltl
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TÂble 3
Errols for sindê- and two-point aPpronmâtions lor dirccted gGpoint scquenc€ (âveragc
rclative crror. mâ.ximum relstiv€ errol, ând nunbcr of times eÂch apForimation was the

Nùmber of
!.ariabl€s Linear ReciDrocâl Modifed Quasi-Newton Projection

10

m

40

0.0139
0.741

l l

0.00554
o2n

13

0.00379
0.0,67

0.00461
0.0860
2

0.00585
0.143

30

0.m119
0.m$7

t2

0.m106
0.0141

l6

o.û232
0.ù220

18

0.00879
0.3?5

18

0.m3m
0.c137

3E
0.m123
0.m50

50
0.0@89
o.0'176

0.00614
0.233

31

0.m120
0.m$7

l l

0.00112
0.0141

0.un45
0.û234

l0

0.m748
0.162

0.ml21
0.00837

22

0.(m3l
0.0525

I t

0.m5m
0.269
9

reciprocal and modited âpproximations are also gr€atly improved but they remain inferior to
the iinear approximatioû, aod the Fojectioû approximation deterioûte'5 due to the coûection
oiocess.

Next, the siogle- aod two-point apprcximations were compared for the diiected set of test
points. Because fiost of the design paûmeters vary monotonically the reciprocal approxima-
iion is much better with this s€quence that the linear approximation. Therefore, the
Droiection melhod was modified to use leciprocal vâriables attd the modified ând qrâsi-
'l.lewron 

aporoximations were constrailed with respect to reciprocal apFoximatiotr ((35) wilh
go reptacing g,). Table 3 shows the r€sults obtained with the dûected sequence oi points The
iêcipiocat ipiroximation was superior to all others with the quasi'Ne\tton method close to it'

Tie superior performance o[ the tecip.ocal approximation for this case is nol surprising in
view of pàst studics [14-161. Becaus€ it is exact when all variables are scaled up or dovn by
the sam; faclor. it tends to be accurate fo. this case of test points, which âre almost

monolonicallv increâsing for alt vaiables This case may meân that when the reciProcal
approximation is much Àore accurâte than the lineal approximation, it is difficuh to improve
uoon it usine two_Doint approximalions
'The exoo-nentiai approiimation and the quasiNevton approximations with the BFGS

updates were g.n..jly inf..io. to the other aPProximations, and so results for these
approximations are not presented

4. 2. Three-p oint aPP rotimotions

The two-point ând three-point proje.tioû and quasi'Newton. methods performed well

cornpared to the linear approrimatiots. Therefore, thlee-point vetsioN of these methods we'e

i^pi'"^"nt"A and conrpâria to the single- and tvro-point approximations Based on previous

;d;i";;" only the quasi-Newton appioximaton was corrected by (35) The results for the
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TÂblc 4
Enors lor singlc-, two-, aîd ihcc-point âpprorittratio[s tur rÂtdom g0point Êêqucnc! (Âverâge
rclaiiv€ enor; maxi rn rchtive crror, number oI tiDqs erch aPProxim ioo i! the b'$ one)

z9

Nunb€r of
vaflabl.s Lineât

2-Poinr 3-Poitrt
3-Point quîsi-Ncçron quasi-Newton

Droje.tion (cîrreaed) (correctcd)
2-Point

Proj.ctioû

5 0.243
0.183
9

0.184 0.150
1.560 1.545

0.215 0.274
|.nt 1.471

72 16

0.m27 0.0811
0.323 0.35
616

0.0468 0.0422
0.459 0.159

ll 16

0.0112 0.0180
o.mr 0.0815

14 19

l0 0.00(B 0.0543 0.1x38
0.332 0.231 0.182
82338

m o.w1
o.262

40 0.0175
0.&99
9

0.656 0.0314
0.w14 0.4142

ta 29

0.0124 0.0114
0.0665 0.0557

16 32

clmpletely rardom set of test points are summatized in Table 4. The thr€e'point plojection
method was substantially better thân the two-Poitlt version, while the improvement of the
quasi-Newton method was matghal.

The results fol the directed set arc presented in Table 5. Fol this s€t the thtee-poiût
approximations are gen€rally poorcr than the two'point ones. These results confrrm the tlend
oùiewed for the two-point apprcximations of implovements ovel the single-point approxima-
tions only fol the landom s€t.

Tâble 5
Enors Ior single-, two-, Ând thrc€-point âpProximatioas for dùelr.d 9ûpoinr s€qucnc€ (âvcrage

relâtivê êror: maximun r€lâtiv€ efior, dumber of times eaih approrimation is th€ tÉst onc)

NumbcÎ of
variables Re.ipro.al

2-Point 3-Poiot
2-Point 3-Poitrt quasi-N.wton quali-Ncwtor

proje.liotr Foje.tion (coûecEd) (conccied)

5 0.m585
0.143

26

0.00748 0.0144
0.762 0.439
914

0.m614
0.233

39

0.001m
0.00837

t3

0.û)112
0.0141

15

0.002t5
0.w4

0.00786
0.338

30

0.m122
0.0û/49

19

0.m119
0.0163

25

0.0m34
0.t220

22

r0 0.001t9 0.ml2l 0.m521
0.ûl&37 0.m$7 0.1Û2

15 34 31

z) 0.m106
0.0141

22
q 0.æ232

o.u]2
u

0.0û231 0.u]285
0.0525 0.0493

t2 ?6

0.m590 0.00283
0.26 0.m33
9n
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5. Conclùdhg remarks

Several two-point approrimatioûs have beet derived for use in constraint function approxi-
matioûs. A rational function u.ith Êndom coefficients displaying some of the characteristics of
disDlâcement and stress constraint functions was used for evâluating the aPproximations. Two
sequences of raldom test point sequ€nces were used in the evaluation. The ûrst sequencæ wâs
completely raldom and the second had raodom perturbation sup€rimposed on monotonically
increasing variables. For the first sequeoce the linear approximation was superior to the
reciprocal approximation and a two-point projection m€thod itas sùbstantially better than
eithàr of theie single-point approximations. For the secotd (dilected) sequence the reciprocal
aDoroximation was much more accurate than the linear approximation aDd slightly more
aiiurate than the two-point approximations. To check whethel the appioximalions can be
improved by ùsing morc poitts, two three-point approximatons were tested. They showed
imorovement for the random set of test points but not for the dil€cted set

The results indicate that the projection method cât be used to substantially improve the
accuÉcy of the approximation cornpâled to linear approximation. However, in cases whete
the reciprocal approximation is very accurate because of its scaling Property, it is very diftcult
to rmplove upon rr.
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