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The use of constraint approximations is recognized as a primary means of achieving computational
efficiency in structural optimization. Existing approximation methods are based upon the value of the
constraint function and its derivatives at a single point. The present paper explores the use of
approximations based upon the value of the constraint and its derivative at two points. Several
candidate approximations are suggested and tested for randomly generated rational constraint func-
tions. Several of the approximations prove to be superior to the single-point approximations.

1. Introduction

One of the major obstacles to the widespread use of automated structural design (structural
optimization) procedures is the need for large computational resources to perform repeated
analyses of the structure throughout the design process. In the mid-seventies Schmit and
coworkers [1, 2] proposed the use of approximate analysis techniques as a way of overcoming
this obstacle. Over the past few years the use of approximations in structural optimization has
become more and more common. The popularity of the idea was underscored in a recent
international symposium on structural optimization [13], where a large number of papers
[4-10] employed approximation techniques.

Some approximation techniques are global in nature. They seek to approximate structural
behavior in the entire design space or a large part of it. This is done by employing simplified
structural models [11], by employing reduced basis techniques [12], or by sampling the design
space and using multiple regression techniques to curve-fit these points with a simple
functional representation [13]. However, more popular are local approximation techniques
which rely on the derivatives of the response function at a design point to obtain an
approximation which is valid in the neighborhood of that design point. One reason for the
popularity of such techniques is that the derivatives of the response are usually required for
the direction seeking procedure in the optimization algorithm. Thus, the approximations can
be obtained at very little extra computational cost by using these derivatives.

One obvious local approximation based on first-order derivatives is a first-order Taylor
series (i.e. a linear approximation). However, often the accuracy of such an approximation is
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acceptable only for relatively small changes in the design parameters. In most structural design
problems a better approximation may be obtained by using a linear expansion in the
reciprocals of the variables [14-16] and this approximation is now widely used. Other
approximations which are in use are rational function approximations [17, 18] and a convex
“conservative” approximation {19, 20], which is a hybrid linear/reciprocal approximation that
is biased to overestimate the criticality of constraint functions. Most of these approximations
utilize only first derivatives, however some work [21] has been done with second derivatives.

All of the above techniques use approximations based on a single design point. As the
structure is being resized new approximations are constructed at new design points. This
practice is wasteful because the information from previous design points is discarded and is not
used to improve later approximations. One reason for the current practice of using only
single-point approximations is the large number of variables. There is very little theoretical
work on approximating a function of many variables to fit data at a small number of points. In
fact, most of the work is on approximating a function of a small number of variables based on
data at a large number of points. The present work considers approximations to a function of
many variables based on the value of the function and its derivatives at two points. Several
candidate approximations are explored and the results for the more successful candidates are
presented.

2. Approximation methods

Several two-point approximation methods were developed and compared against the two
most commonly used one-point approximations. Additionally, two three-point methods were
derived and compared with the two-point approximations. These one- and multipoint approxi-
mations are described below. The points, where the data is given, are denoted X, X,, and X,
with components X,,, X,;, X, i = 1, ..., n. The function to be approximated is g(X), and the
one-point approximations use its value and its derivatives at X,. The two-point approxima-
tions use the value of the function and its derivatives at two points, and the three-point
approximations use the data at three points.

2.1. Linear approximation

This is the first-order Taylor-series expansion:
n ag
8X) = g(X;) + 2 (x, = %) 5= (%) (1)

2.2. Reciprocal approximation

‘This approximation is the first-order Taylor-series expansion in the reciprocals of the
variables y, = 1/x,;, i=1,..., n. Written in terms of the original variables, x,,

g0 =508 + 2 (- 1) (32) S5 (). @
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2.3. Modified reciprocal approximation
The modified reciprocal approximation [17] is

(xmi + xla) ag
(x,, +x,) ox,

800 =) + 3 (- ) G2 2 x,). G

Note that for x,,, =0 we get the reciprocal approximation, and for x_,,— ® we get the linear
approximation. The values of x, ; are assumed to be selected on the basis of experience in [17],
but now they can be selected to match the derivatives at X, (note that the value of the
function and its derivatives at X, are matched by g for any values of x_,). That is

98, a8

e ) - 2 () = (2] B ), @)
= Xai — MiXyy

xm;—m, (5)
where

=% )/, ©)

When the ratio of the derivatives is negative, it is an indication that the derivatives at X
cannot be matched. In that case x,; is set to a very large number, so that the linear
approximation is used for the ith variable.

2.4. Quasi-Newton approximation

The quasi-Newton approximation is written as:

g0=88)+ 3 (- 1) LX)+ 2 B agmnd-x), ()
i=1j=1
where for a two-point approximation k=2 and for a three-point approximation k = 3. The
matrix A, is the quasi-Newton approximation to the Hessian matrix of g. Three popular
update formulae for A, were tried.
(i) Inverse Broyden—Fletcher—Goldfarb—Shanno (BFGS) update:

AP PA, + Y. Y,

A=A, - i 8
i * PAP, Y. P, ®)
where

Y, =Vg(X,,,) —Ve(Xy,), P=Xpii ~ Xy, Ay=0. 9)

Note that unlike usage in optimization there is no need for a positive-definite A, and A, = 0 is
a logical choice in the absence of additional knowledge.
(i) BFGS update:

YkP;) 4 (1_ PkYL) 0 ¢

A, (I-— : + .
k+1 Y,P, Yir ¥Yip (10)
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(iii) Davidon-Fletcher—Powell (DFP) update:

_ (Yk Ly AkPk)(Yk - AkPk)t 3

A +1 = 1 A .
ke (Yk_AkPk)Pk k (11)

Only the DFP update gave reasonable results.

2.5. Two-point projection method

The method is based on a projection of the point X on the line connecting X, and X, (see
Fig. 1). The function g(X) is first approximated by a cubic Hermite polynomial at the
projection point, P, and then linearly extrapolated to X. The projection point P is given as:

P=X,+&X,- X)), (12)
where
£=(X - X)X, — X)X, - X, |I* (13)

The quality of the approximation was found to be good only for interpolation (that is
0< ¢<1) so that if £ from (13) was larger than one or smaller than zero, it was set to the
respective limit of zero or one. The approximation at P is then written as:

o 0-5,@+ 3 [0-0 E @)+ e 2 @) e-p), (14)
where ' ‘
6,(P) = Ni(£)8(X,) + Ni(£)d; + No( O)gK:) + Ni(£)d. (15)

*

Fig. 1. Two-point projection method.
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the N,(£) are the Hermite interpolation polynomials,
N(£)=1-36 428, N(§)=¢§-28"+¢,
Ny(§)=3¢"-2¢°, N(E)=—-€+¢,
d,=(X, - X)'Vg(X), i=1,2. (17)

(16)

and

2.6. Three-point projection method

The method is based on a projection of the point X onto the plane containing the points X,
X,, and X,, where the data is given (see Fig. 2). The function g(X) is first approximated by a
quadratic polynomial at the projection point, P, and then linearly extrapolated to X. A local
coordinate system (s, t) is defined in the plane (see Fig. 2).

The computation begins by calculating two unit vectors e, and e, in the plane and the
calculation of the derivatives dg/ads and dg/dr at points X,, X,, and X;,. In the plane the
function is approximated as:

d 0
gp(s, 1) =g(X;)+ "é% (s—55)+ a_g; =) ¥ da,(s— 33)2 + a,,(s — ;)1 — 13)

+ia,(t- 1), (18)

and the three unknown coefficients are found from a least-square fit using the value of the
function and its derivatives at points X, and X,.

Once (18) is used to approximate g(P), the gradient vector Vg(P) is found by linear
interpolation in the s-¢ plane using Vg(X, ), Vg(X,), and Vg(X;). Finally, g(X) is approximated
as

g,(X) = g,(P) + (X — P)'Vg(P). (19)

—— e =

(e,

X X

Fig. 2. Three-point projection method.
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2.7. Exponential approximation

The exponential approximation is based on dividing the variables into two groups: those
that have constant sign derivatives and those that alternate in sign. That is,

jels, i g(X) (Xz) 0,

(20)
g %
jeJ, if ax, (X)) ax, (X,)<0.
A general function which replicates the behavior of the derivatives is
g.(X)=cexp— [ > axfi+ 2 y(x; - 3,.)2} : (21)
JEL i€ty

The coefficients a;, B;, 7;, and g; are calculated to match the derivatives at X and X,. For
j € J, we get two equations,

0 - , d =
% ()= B 0)"HK) s Gy (X =) 8K (22)
] J
which yields

m[ a%% (X)8(X,) / g—f; (X,)8(x,) |

Bi=1+ In(x,;/x;,) (23)

and

!

d Bi—
0= = 5 (X,) 1By 8(Xy) (24)
I
Similarly, for j € J,, the equations

%f; (X)) = —28(X)7(xy; = §) g:%_ (X,) = —28(X,) 7 (x5, — &) (25)

are solved to yield

x,8(%,) 5 (X) xz,g(X) (xl)
5= - , (26)
g(X,) g(X) g(X,) g(X)

L 2g(X1)Ex1j = Sj) ’ (27)
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Finally, the constant c is calculated to match the function value at X,
c=8/g(X,), (28)

§=eXP-[2

jeh

where
axy + 2 (%, -a!)z]. (29)
i)

3. Test procedure

3.1. Test functions

The displacements of a linear elastic structure may be found by solving a system of linear
equations generated by a finite element model. The elements of the matrix of the equations
(the stiffness matrix) are typically polynomials of the design variables. Therefore the displace-
ments are rational functions of the design variables. The test functions selected for evaluating
the various approximation are, therefore, chosen to be simple rational functions with random
coefficients. In choosing the form of the rational function two properties of displacement
functions were considered. First, for most structural optimization problems the displacements
are finite for positive values of the design parameters. Second, when the design parameters are
cross-sectional areas of bars or thicknesses of membrane elements, a simple scaling relation
holds. When all the design parameters are multiplied by a factor, the resulting displacements
and stresses are reduced by the same factor.

To achieve the above characteristics the test function g(X) is chosen to be in the form

8(X) = a(X) /b(X) , (30)
where

a(X) = 2 3 (31)
al'ld J;l n—1 n

b(X) = Z (5%} +555) + 2 X Wk (32)

The coefficients s,;, 55, 55;, and w;, are randomly generated using a two-stage process. First, a
random number is selected for each coefficient to determine whether it is zero or not. The
probability of being nonzero is denoted as p,, p,, p;, and p,, for s, 5,, 54, and wy,,
respectively. Second, if the coefficient is to be nonzero, its value is selected by a random
variable uniformly distributed in an interval (0,d,),i=1,...,4, where i =1, 2, 3 correspond
to s; and i = 4 to w;,. Note that for any choice of the random coefficients g(X) has the desired
scaling properties.

3.2. Test points

Beside test functions it is also necessary to select a sequence of design points. Two
procedures are used for this purpose. The first procedure is completely random with each
component x, selected as a uniformly distributed random number in the interval (0, d). The
second procedure seeks to imitate the sequence of points generated by an optimization
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procedure. It assumes that the design proceeds in a certain direction with random oscillations
about that direction. This procedure follows five steps, requiring the generation of variables.
In all cases below, each random variable has a uniform distribution in the indicated interval.
The steps of the procedure are as follows:

Step 1. An initial point X, is selected with x,;, j=1,...,n, a random number in [0, 1].

Step 2. A direction vector U is chosen with each component a random number in [0, 1] and
then U is normalized so that | U] =1.

Step 3. A sequence of m—1 random numbers A, i=1,...,m—1, each in [0, d] is
generated. It is used to define m points X, moving along the given direction

X,=X,, X, =X-ntr, U, i=2,...,m. (33)

Step 4. Random perturbations normal to the direction of motion are generated by
generating another random direction V,, k=1,...,m — 1, as in Step 2, making it orthogonal
to U and normalizing its length to 1.

Step 5. The final design vector is obtained by adding V, to X, as

X=X, +aV,, k=2,..,,m, (34)
where a, is a random number in [0, r].

The m test points which are generated by either procedure were used to generate m — 2
approximations. The value of g(X) at X, k=3,..., m, is approximated by the three-point
approximations based on the function and its derivatives at X, ,, X, _,, and X, _,. Two-
point approximations used data at X, _, and X, _,, and single-point approximations utilized the
data at X, _,.

4, Results and discussion

4.1. One- and two-point approximations

The constants used for the random generation of the function and the test points were the
following: d,, i=1,...,4, 25., 60., 20., 30. for the first generation scheme, 10., 10., 10., 10.
for the second generation scheme; p,=0.8, i=1,2,3; p,, =0.8; d=8; r=1.0. Ninety test
points were generated by each procedure and eighty-eight approximations were generated.
These are compared on the basis of average relative error, maximum relative error, and the
number of times (out of 88) that a given approximation was the best of all approximations.

The single- and two-point approximations were first compared for the completely random
test points. Table 1 presents the results for the linear, reciprocal, modified, quasi-Newton
(DFP update) and projection approximations as a function of the number of design variables.
The projection two-point approximation had the best performance with an average error
25-40% lower than that of the linear approximation which was the next best. The other
approximations had very large maximum errors which indicated that their poor performance
may be due to a small number of points with large errors. Therefore it was decided to check
how much the performance will be affected if the permissible deviation from the linear
approximation was limited.
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Table 1

Errors for single- and two-point approximations for random 90-point sequence (average
relative error, maximum relative error, and number of times each approximation was the
best one)

Number of
variables Linear Reciprocal Modified  Quasi-Newton  Projection
5 0.249 0.680 0.444 0.559 0.183
1.863 3443 4.197 18.15 1.561
15 4 21 5 29
10 0.0935 2.656 0.221 0.285 0.0543
0.333 44,53 3.533 9.067 0.232
16 5 13 25 31
20 0.0465 3.121 2.574 0.118 0.0354
0.262 74.41 167.1 1.980 0.0975
19 2 10 26 33
40 0.0174 1.681 0.118 0.0280 0.0123
0.0499 34.49 1.989 0.373 0.0665
14 0 8 31 35

The approximations were limited to 30% deviation from the linear approximation. That is

(ga(X) = g(XZ]l <
|g(X) - g(Xz)I
where g, represents g,, g,., 8,, Or g,. The results with these corrected approximations are

given in Table 2. It is seen that the quasi-Newton approximation is greatly improved and has
average errors which are up to 12% lower than those of the linear approximation. The

0.7= 1.3, (35)

Table 2

Errors for corrected single- and two-point approximations for random 90-point sequence
(average relative error, maximum relative error, and number of times each approximation
was the best one)

Number of
variables Linear Reciprocal Modified  Quasi-Newton  Projection
5 0.249 0.289 0.244 0.219 0.208
1.863 2.255 147 1.471 1.47
9 19 17 29 33
10 0.0935 0.117 0.0943 0.0822 0.0726
0.333 0.425 0.272 0.323 0.254
16 9 15 33 36
20 0.0465 0.0637 0.0546 0.0465 0.0384
0.262 0.158 0.459 0.459 0.0978
15 11 17 26 32
40 0.0174 0.0273 0.0193 0.0171 0.0141
0.0499 0.0518 0.0810 0.0815 0.0428
11 3 19 30 31
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Table 3

Errors for single- and two-point approximations for directed 90-point sequence (average
relative error, maximum relative error, and number of times each approximation was the
best one)

Number of
variables Linear Reciprocal Modified  Quasi-Newton Projection
5 0.0139 (.00585 0.00879 0.00614 0.00748
0.741 0.143 0.375 0.233 0.162
11 30 18 31 8
10 0.00554 0.00119 0.00308 0.00120 0.00121
0.223 0.00837 0.0737 0.00837 0.00837
13 12 38 5§ 22
20 0.00379 0.00106 0.00123 0.00112 0.00231
0.0967 0.0141 0.0250 0.0141 0.0525
4 16 50 8 11
40 0.00461 0.00232 0.00289 0.00245 0.00590
0.0860 0.0220 0.0776 0.0234 0.269
2 18 55 10 9

reciprocal and modified approximations are also greatly improved but they remain inferior to
the linear approximation, and the projection approximation deteriorates due to the correction
process.

Next, the single- and two-point approximations were compared for the directed set of test
points. Because most of the design parameters vary monotonically the reciprocal approxima-
tion is much better with this sequence than the linear approximation. Therefore, the
projection method was modified to use reciprocal variables and the modified and quasi-
Newton approximations were constrained with respect to reciprocal approximation ((35) with
g, replacing g,). Table 3 shows the results obtained with the directed sequence of points. The
reciprocal approximation was superior to all others with the quasi-Newton method close to it.

The superior performance of the reciprocal approximation for this case is not surprising in
view of past studies [14-16]. Because it is exact when all variables are scaled up or down by
the same factor, it tends to be accurate for this case of test points, which are almost
monotonically increasing for all variables. This case may mean that when the reciprocal
approximation is much more accurate than the linear approximation, it is difficult to improve
upon it using two-point approximations.

The exponential approximation and the quasi-Newton approximations with the BFGS
updates were generally inferior to the other approximations, and so results for these
approximations are not presented.

4.2. Three-point approximations

The two-point and three-point projection and quasi-Newton methods performed well
compared to the linear approximations. Therefore, three-point versions of these methods were
implemented and compared to the single- and two-point approximations. Based on previous
experience only the quasi-Newton approximation was corrected by (35). The results for the
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Table 4

Errors for single-, two-, and three-point approximations for random 90-point sequence (average
relative error, maximum relative error, number of times each approximation is the best one)

2-Point 3-Point
Number of 2-Point 3-Point quasi-Newton  quasi-Newton
variables Linear projection projection (corrected) (corrected)
5 0.243 0.184 0.150 0.215 0.214
0.183 1.560 1.545 1.471 1.471
9 22 37 12 16
10 0.0903 0.0543 0.0438 0.0827 0.0811
0.332 0.231 0.182 0.323 0.345
8 23 38 6 16
20 0.0467 0.0356 0.0314 0.0468 0.0422
0.262 0.0974 0.0742 0.459 0.159
15 18 29 11 16
40 0.0175 0.0124 0.0114 0.0172 0.0180
0.0499 0.0665 0.0557 0.0815 0.0815
9 16 32 14 19

completely random set of test points are summarized in Table 4. The three-point projection
method was substantially better than the two-point version, while the improvement of the
quasi-Newton method was marginal.

The results for the directed set are presented in Table 5. For this set the three-point
approximations are generally poorer than the two-point ones. These results confirm the trend
observed for the two-point approximations of improvements over the single-point approxima-

tions only for the random set.

Table 5

Errors for single-, two-, and three-point approximations for directed 90-point sequence (average
relative error, maximum relative error, number of times each approximation is the best one)

2-Point 3-Point
Number of 2-Point 3-Point quasi-Newton  quasi-Newton
variables Reciprocal projection projection (corrected) (corrected)
5 0.00585 0.00748 0.0144 0.00614 0.00786
0.143 0.162 0.439 0.233 0.338
26 9 14 39 30
10 0.00119 0.00121 0.00521 0.00120 0.00122
0.00837 0.00837 0.102 0.00837 0.00749
15 34 31 13 19
20 0.00106 0.00231 0.00285 0.00112 0.00119
0.0141 0.0525 0.0493 0.0141 0.0163
22 12 36 15 25
40 0.00232 0.00590 0.00283 0.00245 0.00234
0.022 0.269 0.0233 0.0234 0.0220
24 9 217 23 22
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5. Concluding remarks

Several two-point approximations have been derived for use in constraint function approxi-
mations. A rational function with random coefficients displaying some of the characteristics of
displacement and stress constraint functions was used for evaluating the approximations. Two
sequences of random test point sequences were used in the evaluation. The first sequence was
completely random and the second had random perturbation superimposed on monotonically
increasing variables. For the first sequence the linear approximation was superior to the
reciprocal approximation and a two-point projection method was substantially better than
either of these single-point approximations. For the second (directed) sequence the reciprocal
approximation was much more accurate than the linear approximation and slightly more
accurate than the two-point approximations. To check whether the approximations can be
improved by using more points, two three-point approximations were tested. They showed
improvement for the random set of test points but not for the directed set.

The results indicate that the projection method can be used to substantially improve the
accuracy of the approximation compared to linear approximation. However, in cases where
the reciprocal approximation is very accurate because of its scaling property, it is very difficult
to improve upon it.
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