
C EXTENDED ESSAY

2003:044

Implementing a parametric
EQ plug-in in C++ using the

multi-platform VST specification

JONAS EKEROOT

SCHOOL OF MUSIC
Audio Technology

Supervisor: Jan Berg

2003:044 • ISSN: 1402 – 1773 • ISRN: LTU - CUPP - - 03/44 - - SE

Implementing a parametric EQ plug-in in C++

using the multi-platform VST specification

Jonas Ekeroot

Division of Sound Recording
School of Music in Pite̊a

Lule̊a University of Technology

April 23, 2003

Abstract

As the processing power of desktop computer systems increase by
every year, more and more real-time audio signal processing is per-
formed on such systems. What used to be done in external effects
units, e.g. adding reverb, can now be accomplished within the com-
puter system using signal processing code modules – plug-ins. This
thesis describes the development of a peak/notch parametric EQ VST
plug-in. First a prototype was made in the graphical audio program-
ming environment Max/MSP on MacOS, and then a C++ implemen-
tation was made using the VST Software Development Kit. The C++
source code was compiled on both Windows and MacOS, resulting in
versions of the plug-in that can be used in any VST host application
on Windows and MacOS respectively. Writing a plug-in relieves the
programmer of the burden to deal directly with audio interface details
and graphical user interface specifics, since this is taken care of by the
host application. It can thus be an interesting way to start developing
audio DSP algorithms, since the host application also provides the op-
portunity to listen to and measure the performance of the implemented
plug-in algorithm.

2

Keywords

Audio, plug-in, C++, parametric EQ, digital filter, FIR, IIR, biquad, Max/MSP,
DSP, API, real-time

3

Contents

1 Introduction 8
1.1 Thesis aim and limitations . 8
1.2 Organization of the thesis . 8

2 Background 10
2.1 What is a plug-in? . 10
2.2 Types of plug-ins . 10
2.3 Real-time and non-real-time plug-ins 12
2.4 Digital audio effects . 13
2.5 Review of basic DSP theory 13

2.5.1 Signals and systems 13
2.5.2 Quantization . 14
2.5.3 Digital filters – FIR and IIR 15
2.5.4 Second-order IIR filter 16
2.5.5 Peak/notch parametric EQ 18

3 Prototype 20
3.1 Max/MSP . 20
3.2 Algorithm testing . 21
3.3 Pluggo . 23

4 Implementation 24
4.1 The VSTSDK C++ framework 24
4.2 The AudioEffect and AudioEffectX classes 25
4.3 The Biquad class . 26

5 Results 29
5.1 Aural assessment . 30
5.2 Matlab measurements . 30
5.3 Default plug-in GUI . 33
5.4 Windows host applications . 33

5.4.1 WaveLab . 33
5.4.2 AudioMulch . 34
5.4.3 Audacity . 35

5.5 MacOS host applications . 35
5.5.1 Cubase VST . 36
5.5.2 Max/MSP . 36

5.6 Parameter adjustments . 36
5.7 Summary of results . 37

4

6 Discussion 38
6.1 Max/MSP and similar applications 38
6.2 The VSTSDK C++ source code 38
6.3 Optimization . 39
6.4 The frequency parameter limits 39
6.5 Cross-platform GUI . 40
6.6 Conclusions . 40

5

List of Figures

1 Block diagram representation of a discrete-time system 14
2 Feedforward FIR filter . 15
3 Feedback IIR filter . 16
4 Second-order IIR system – biquad 17
5 A simple Max/MSP patch . 20
6 Patch to calculate biquad coefficients 22
7 Patch to listen to filtered white noise 22
8 A pluggo version of the parametric EQ VST plug-in 23
9 Plug-in API and audio API – a hierarchical view 24
10 Class hierarchy for the Biquad VST plug-in 26
11 The original impulse and the impulse response 31
12 The magnitude and the phase of the frequency response . . . 32
13 Parametric EQ VST plug-in in WaveLab 34
14 Parametric EQ VST plug-in in AudioMulch 34
15 Patch in AudioMulch showing a mono plug-in 35
16 Parametric EQ VST plug-in in Audacity 35
17 Parametric EQ VST plug-in in Cubase 36
18 Parametric EQ VST plug-in in Max/MSP 36

6

List of Abbreviations

API Application Programming Interface
AS AudioSuite
CPU Central Processing Unit
DFT Discrete Fourier Transform
DLL Dynamic Link Library
DSP Digital Signal Processing
EQ Equalizer
FFT Fast Fourier Transform
FIR Finite Impulse Response
GUI Graphical User Interface
HTDM Host Time Division Multiplexing
HW Hardware
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IIR Infinite Impulse Response
IRCAM Institut de Recherche et Coordination Acoustique/Musique
I/O Input/Output
LADSPA Linux Audio Developer’s Simple Plug-in API
MAS MOTU Audio System
MOTU Mark of the Unicorn
MSP Max Signal Processing
RTAS Real-Time AudioSuite
SGI Silicon Graphics Incorporated
TDM Time Division Multiplexing
VSTSDK Virtual Studio Technology Software Development Kit

7

1 Introduction

In audio production of today computers play a central role. Computer sys-
tems, with appropriate hardware and software applications, are being used
for recording, editing, mixing, mastering and streaming on the Internet.
The use of various types of audio signal processing like EQ, delay, rever-
beration and dynamic compression that used to be performed by dedicated
outboard equipment, is to a large extent carried out within the computer
system nowadays. In such a system, the signal processing is not done by a
specialized DSP (Digital Signal Processing) chip but by the general-purpose
CPU (Central Processing Unit) of the specific system. Typical examples for
current desktop computers running commercial operating systems include
Motorola or IBM CPUs used by MacOS, and Intel or AMD CPUs used by
Windows. The signal processing parts of audio software applications are
often placed in separate code modules – called plug-ins – that are loaded
into the basic application to extend its functionality.

1.1 Thesis aim and limitations

The work being done during the writing of this thesis was focused on plug-in
development. Applied basic audio DSP theory in the context of computer
audio programming was treated, as was the development process of an audio
plug-in in a format that fits in many audio software applications of today on
both Windows and MacOS – the Steinberg VST (Virtual Studio Technology)
format. Parts of the underlying structure of a VST audio plug-in written in
C++ was also examined.

The main aim of investigating VST plug-in development was subdivided
into two parts – the development of a prototype in a graphical oriented
development environment, and the implementation of the final plug-in in
C++. The subject was further narrowed down to implement a specific
digital audio effects algorithm - a peak/notch parametric EQ plug-in with
adjustable frequency, gain and Q values.

Analogue filter prototype design was not part of the work conducted for
this thesis, nor was the conversion of such prototypes into digital filters. In-
stead, descriptions of filters directly in the digital domain were used. Some
mathematical equations are stated in the thesis in order to explain the im-
plemented DSP algorithm, but the focus is on presenting conceptual ideas
and not on going through rigorous mathematical proofs and derivations.

1.2 Organization of the thesis

Chapter 2 gives a general description of audio plug-ins, and a review of
fundamental DSP theory with an emphasis on digital filters. This provides
a background for the discussion in the subsequent chapters. Thereafter, the

8

details of the prototype and the implementation are described in chapter 3
and chapter 4. The results of testing the compiled plug-in in a number of
different host applications on both Windows and MacOS are presented in
chapter 5. An analysis of the frequency response of the plug-in is performed,
and the differences in the default graphical user interfaces (GUIs) are shown.
The last chapter contains a discussion of some of the topics treated in earlier
chapters, and also gives suggestions for future improvements that could be
made to the parametric EQ VST plug-in.

9

2 Background

This section provides a brief overview of some background concepts that
forms the basis for the topics that are treated in subsequent chapters. First,
a general definition of an audio plug-in is given, followed by a listing of
different plug-in types in common use. Thereafter, some timing related
issues as they apply to plug-ins are touched upon. The section ends with a
review of fundamental DSP theory with an emphasis on digital filters.

2.1 What is a plug-in?

An audio plug-in is a software component that can not execute within a com-
puter system on its own, but needs a host application that makes use of the
audio signal processing that the plug-in supplies. In this way the host ap-
plication provides the basic functionality like audio input and output (I/O)
through an audio interface (i.e. a sound card), audio file writing and reading
to and from a hard disk, and waveform editing. By placing the file contain-
ing the compiled plug-in code in a directory where the host application can
find it, the plug-in becomes available from inside the host application. In
other words, the plug-in extends the functionality of the host application
by supplying specialized audio signal processing. The host does not need to
know anything about the DSP algorithm inside the plug-in, and the plug-in
does not need to have any knowledge of the audio I/O handling or the GUI
of the host. The following quote is from the VST specification [1]:

“From the host application’s point of view, a VST plug-in is
a black box with an arbitrary number of inputs, outputs and
associated parameters. The host needs no knowledge of the plug-
in process to be able to use it.”

Thus, the only thing a host application and a plug-in need to agree about is
the way that they communicate digital audio samples and parameter values
between themselves. The host continuously supplies the plug-in with chunks
of audio samples, input buffers, which the plug-in processes using its DSP
algorithm and returns back as output buffers to the host for playback.

2.2 Types of plug-ins

The way that a plug-in and a host communicate differs among different
types of plug-in specifications. There are a number of different formats
available on the market, and the topic of this thesis is the plug-in format
introduced in 1996 by Steinberg Media Technologies AS, in their Virtual
Studio Technology line of products. From the Steinberg web site the Virtual
Studio Technology Plug-In Specification 2.0 Software Development Kit, or
VSTSDK for short, can be freely downloaded [1]. The VSTSDK consists

10

of a C++ framework, and source code for MacOS, Windows, BeOS and
SGI/MOTIF is provided. This means that VST plug-ins are easily developed
for platform independance, or at least to have multi-platform support.

The free availability of the VSTSDK has resulted in a large number of
plug-ins by third-party developers, and the VST plug-in format is currently
one of the major formats supported by host applications. Other common
plug-in formats include:

DirectX by Microsoft is really more than a plug-in format. It is a set
of application programming interfaces (APIs) for multimedia applica-
tion development. DirectX plug-ins only work in host applications on
Windows. A C++ SDK for writing DirectX applications, including
plug-ins, is available from the Microsoft web site1.

MAS is a plug-in format by Mark of the Unicorn (MOTU). MAS stands
for MOTU Audio System. These plug-ins can only be used on MacOS.
By signing an agreement with MOTU, third-party developers can gain
access to a C++ SDK2.

TDM is a plug-in format by Digidesign. TDM stands for Time Division
Multiplexing. This type of plug-ins requires the presence of a dedicated
DSP chip, and thus differs from the other types listed here, which use
the general CPU of the computer for what is called native or host-
based processing. To develop TDM plug-ins, third-party developers
have to sign an agreement with Digidesign.

AS/RTAS/HTDM are plug-in formats by Digidesign for native process-
ing. AS stands for AudioSuite and RTAS stands for Real-Time Au-
dioSuite. RTAS allows the resulting sound of the plug-in process to
be heard as the calculations proceed, in contrast to the AS plug-ins,
where a whole file or audio selection is processed in its entirety, be-
fore the results can be auditioned. HTDM stands for Host Time
Division Multiplexing and represent a hybrid of the TDM and the
RTAS plug-in formats, that allow for host-based processing. To de-
velop AS/RTAS/HTDM plug-ins, third-party developers have to sign
an agreement with Digidesign.

LADSPA is a plug-in format for the Linux operating system. LADSPA
stands for Linux Audio Developer’s Simple Plug-in API, and is released
under LGPL (Less-GNU Public License). A C/C++ SDK is available
for download3.

1http://download.microsoft.com/download/whistler/dx/8.1/w982kmexp/en-us/DX81SDK FULL.exe
2http://www.motu.com/english/other/developer/index.html
3http://www.ladspa.org/ladspa sdk

11

Audio Units by Apple is a plug-in format that is part of MacOS X Core
Audio4. An SDK and developer tools are available from Apple5.
Emagic offers a VST-To-Audio Units porting library to facilitate the
porting of existing VST plug-ins to Audio Units plug-ins6.

2.3 Real-time and non-real-time plug-ins

Arfib [2] described a real-time audio DSP process as one in which the sound
could be listened to at the same time as the calculations proceeded. For this
to be possible, the mean processing time for one sample of a mono signal
must be less than the sampling period of the digital audio signal. Non-real-
time plug-ins on the other hand, process the whole of an audio selection
before the result can be listened to, and thus have more relaxed timing
constraints. Usually a short segment of an audio file can be previewed in
order to make adjustments of the plug-in parameters. When the parameters
are set, the plug-in applies its process to all of the samples in the file and
writes the results to a new audio file, which can then be listened to.

The processing power of current desktop computers quite easily handles
real-time plug-ins. Using the VST specification, plug-ins can be developed to
provide both real-time and non-real-time, or off-line, usage. The parametric
EQ plug-in developed in this thesis is a real-time plug-in.

Another timing related issue is worth mentioning in this context. If a
host application reads audio samples from the audio interface input and
without further processing of the samples sends them back to the audio in-
terface output, this task takes some time to accomplish and there will be
a noticeable delay between the input and the output. This delay is often
referred to as latency, and was investigated by MacMillan et al [3] in the
context of desktop operating systems. The latency depends on many pa-
rameters such as the CPU speed, the amount of memory, the type of hard
disk, the type of sound card, the operating system, the API used to de-
velop the audio software and the type of sound card drivers. Measurements
presented in [3] show latency values for some of the best systems of under
5 milliseconds, but values of several hundred milliseconds were also found.
So, the fact that a plug-in operates in a real-time mode does not mean that
it turns the computer system into an effects processor with a real-time re-
sponse comparable with a dedicated hardware effects unit. The latency will
give a noticeable throughput delay.

4http://www.apple.com/macosx/technologies/audio.html
5http://developer.apple.com/audio/
6http://www.emagic.de/support/osx/developer.php?lang=EN

12

2.4 Digital audio effects

In this thesis, no general description of algorithms for different digital audio
effects is given. This topic has been presented by other authors. Zölzer [4]
gave a comprehensive overview of the field, covering filters, delays, modula-
tors, dynamics processing and spatial effects, with software implementations
using Matlab7. Bendiksen [5] systematically described digital audio effects
according to a classification into amplitude modulation effects, frequency
modulation effects, spatial effects, filtering and dynamics compression. He
also used Matlab for software implementation examples. Browning [6] in-
vestigated effects like delay, reverb, chorus, flange, distortion and filtering,
using pseudo-code examples.

2.5 Review of basic DSP theory

To develop an audio plug-in requires knowledge not only of the programming
language and the framework to be used for the implementation, but also of
basic DSP theory. Original DSP algorithm development is an advanced
topic that involves a deep knowledge of university level mathematics. This
was out of the scope of this thesis.

2.5.1 Signals and systems

McClellan et al [7] gave an abstract definition of signals as patterns of
variations that represent or encode information. Such patterns evolve in
time to create time waveforms. An example of a continuous-time signal
(analogue signal) is the varying output voltage from a microphone. This
signal can be mathematically represented by a function x of a continuous
variable t

x(t) (2.1)

where t refers to time. By sampling the continuous-time signal at equally
spaced time instants, a discrete-time signal (digital signal) is obtained

x[n] = x(nTs) (2.2)

where n is an integer, and Ts is the sampling period

Ts =
1
fs

(2.3)

where fs is the sampling frequency. The signal x[n] is a sequence of numbers
indexed by the integer n. The numbers in x[n] are the sampled values of
x(t) taken once every Ts seconds. In this thesis, the notational convention
of enclosing the independent variable of a continuous-time function with

7http://www.mathworks.com

13

parentheses (), and enclosing the independent variable of a discrete-time
function (sequence) with square brackets [], is used. The square bracket
notation for sequences is in analogy with the syntax for arrays of numbers
in C++. An array named x consisting of four digital audio samples stored
as floats would be declared as

float x[4];

and the individual samples could be accessed as x[0], x[1], x[2] and x[3].

In a very general sense, a system operates on signals to produce new
signals [7]. Using this definition, equation (2.2) could be viewed as a system
where the input is a continuous-time signal and the output is a discrete-
time signal. The system could be called a continuous-to-discrete (C-to-D)
converter [7].

A discrete-time system takes an input signal x[n] and produces a corre-
sponding output signal y[n]. This can visually be represented by the block
diagram in figure 1.

x[n]
- System

y[n]
-

Figure 1: Block diagram representation of a discrete-time system.

2.5.2 Quantization

The actual hardware system for doing C-to-D conversion is an analogue-to-
digital (A-to-D) converter. Due to real-world problems such as jitter and the
quantization of the sample values to a finite resolution, the A-to-D converter
is only an approximation of the perfect sampling of the C-to-D converter.

The quantization resolution of the sample values in x[n] affects the audio
quality of the signal. In VST plug-ins, audio samples are handled as 32-
bit single precision floating-point numbers [1], according to the IEEE 754
specification, described by Patterson and Hennessy [8]. The sample values
are normalized to range from −1.0 to +1.0. Thus, a sample value of 1.0
corresponds to 0 dBFS, a value of 0.5 corresponds to −6 dBFS, etc.

The use of 32-bit floating-point sample values in the range from −1.0 to
+1.0 means that the internal resolution of a VST plug-in is higher than 16-
bit integer resolution (audio CD standard). It also gives plenty of headroom
to deal with overflow calculations in a controlled manner.

14

2.5.3 Digital filters – FIR and IIR

According to Roads [9], a committee of signal processing engineers once
made the following definition of a digital filter:

“A digital filter is a computational process or algorithm by which
a digital signal or sequence of numbers (acting as input) is trans-
formed into a second sequence of numbers termed the output
digital signal.”

By this definition every discrete-time system, as in figure 1, is a filter, re-
gardless of what operation the filter performs on the input signal. The term
digital filter is used in this thesis in a more specific sense, to describe systems
that boost or attenuate regions of the frequency spectrum of a signal.

To make such a filter, the functionality of three basic building blocks is
required:

• the delay of a sample value by one or several sample periods

• the scaling of a sample value by a gain factor

• the mixing (adding) of two or more sample values

Figure 2 shows a filter that delays a copy of the current sample of the input
signal, scales the level of the delayed sample by a gain factor g and mixes
the direct and the delayed signals. The filter has a feedforward path.

x[n]
- k+

y[n]
-

?

j×

g

?-Delay-

Figure 2: Delay the input and mix (feedforward).

A time-domain (or n-domain) formula for computing y[n] based on the
present input sample and past input or output samples, or both, is called
a difference equation [7]. Given a delay of one sample period, the filter in
figure 2 can be described by the difference equation

y[n] = x[n] + g x[n− 1] (2.4)

where x[n] is the current sample of the input signal and x[n − 1] is the
previous (delayed) sample of the input signal. This is called a first-order
filter since the maximum delay used in equation (2.4) is one sample period.

15

A second-order filter has a maximum delay of two sample periods, and so
on.

If the input signal to the filter described by equation (2.4) is an impulse

δ[n] =

{
1 n = 0
0 n 6= 0

(2.5)

the output signal, or impulse response, will have a finite number of non-zero
sample values – the original impulse will be at y[0] followed by the delayed
and scaled impulse at y[1]. This type of feedforward filter is called a Finite
Impulse Response or FIR filter. Equation (2.4) thus describes a first-order
FIR filter.

A filter that delays a copy of the current sample of the output signal,
scales the level of the delayed sample by a gain factor g and mixes the direct
and the delayed signals, is shown in figure 3.

x[n]
- k+

y[n]
-

?

j×

g

?¾ Delay ¾

Figure 3: Delay the output and mix (feedback).

The filter has a feedback path and is described by the difference equation

y[n] = x[n] + g y[n− 1] (2.6)

provided that the delay is one sample period. The impulse response of this
filter will theoretically have an infinite number of non-zero sample values due
to the feedback path, which always sends back some of the output signal.
This type of feedback filter is therefore called an Infinite Impulse Response
or IIR filter, and equation (2.6) thus describes a first-order IIR filter.

By inserting more delays and mixing the delayed and scaled samples
with the current input sample, more complex filters can be made.

2.5.4 Second-order IIR filter

By combining the basic filter methods in figure 2 and figure 3 according to
the block diagram in figure 4, a structure called a second-order IIR filter,
Direct form I, is created, as described by Dattorro [10]. The difference

16

j×

b0

?

j×

b1

?

j×

b2

?

j×

−a1

?

j×

−a2

?

½¼

¾»∑
- - -

¢
¢
¢
¢
¢
¢̧

£
£
£
£
£
£
£
£
£
£
£
£±

A
A

A
A

A
AK

B
B

B
B

B
B

B
B

B
B

B
BM

z−1

z−1

z−1

z−1

-

-

¾

¾

?

?

?

?

x[n]

x[n− 1]

x[n− 2]

y[n]

y[n− 1]

y[n− 2]

Figure 4: Second-order IIR system, Direct form I. z−1 means a delay of
one sample period.

equation describing the second-order IIR filter in figure 4 is

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]
− a1y[n− 1]− a2y[n− 2] (2.7)

where b0, b1, b2, a1 and a2 are called the filter coefficients. By carefully
chosing the filter coefficients, many types of filter responses can be realized
by equation (2.7). Second-order IIR filters are often used as building blocks
to construct more complex filters [9].

Since equation (2.7) describes the operation of the filter in the time-
domain, it can be implemented directly in C++ using arrays of samples as
input and output signals.

The operation of a system can also be described in the z-domain by
using the z-transform. This transform is used primarily as a mathematical
analysis tool and not for the implementation of filters, which is usually done
in the time-domain [7]. A thorough description of the z-transform goes out
of the scope of this thesis. Just briefly though, the transfer function for the
system described by the second-order IIR difference equation can be written

H(z) =
Y (z)
X(z)

=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(2.8)

where b0, b1, b2, a1 and a2 are the same filter coefficients as in equa-
tion (2.7) [7]. The delay of one sample period in the time-domain cor-
responds to a multiplication by z−1 in the z-domain. Since the transfer

17

function H(z) is a ratio of two second-degree (or quadratic) polynomials, a
second-order IIR filter is also called a biquad [9].

2.5.5 Peak/notch parametric EQ

The plug-in developed during the work for this thesis should let the user
adjust the frequency, gain and Q value of a peak/notch parametric EQ. The
problem at hand then was to calculate the filter coefficients starting from the
frequency, gain and Q values. Formulae by Robert Bristow-Johnson, Wave
Mechanics8, and also a member of the review board of the Journal of the
Audio Engineering Society, were used in the plug-in implementation. The
formulae are freely available on the Internet, and were described in Bristow-
Johnson [11]. They are based on an analogue filter prototype that has been
mapped to a digital filter using the bilinear transform. Details about the
derivation of the formulae can be found in Bristow-Johnson [12].

First some intermediate variables (partly using the original notation
from [11]) were calculated

A =
√

10g/20 = 10g/40

ω =
2πf

fs

sn = sin ω

cs = cosω

α =
sn

2Q

where g is the gain value in dB, f is the frequency in Hz, fs is the sampling
frequency in Hz and Q is the Q value, determining the bandwidth of the
filter.

Bristow-Johnson [12] found that there is little agreement or consistent
definition of equalizer bandwidth in the literature, and Harris and Brook-
ing [13] wrote:

“There is a near universal source of confusion related to the
bandwidth of a boost and of a cut operation in a filter.”

The bandwidth for a peak/notch filter was defined by White [14] as the
difference between the frequencies where the filter response deviates from
unity by 3 dB. In this case, no bandwidth can be defined for boosts or
cuts of less than 3 dB. Another definition was made by Moorer [15]. For
a boost or cut of 6 dB or more, he defined the bandwidth as the difference
between the frequencies where the response is 3 dB below the peak or above
the notch. When the boost or cut is less than 6 dB, the bandwidth is

8http://www.wavemechanics.com

18

defined as the difference between the midpoint gain frequencies, where the
response is half the boost or cut amount, expressed in dB. The midpoint
gain (i.e. g/2 dB) definition was adopted by Bristow-Johnson [11, 12] but
applied consistently for all gain settings, i.e. also for boosts or cuts of 6 dB
or more. For a peak/notch EQ he additionally identified QEE = AQ to be
the classic electrical engineering Q.

In the peak/notch parametric EQ plug-in implemented in this thesis, f ,
g and Q in the formulae for the intermediate variables above, were the design
parameters that the user could adjust using sliders in the plug-in GUI, and
the Bristow-Johnson midpoint gain (i.e. g/2 dB) definition of the Q value
was used. After the intermediate variables had been calculated, the filter
coefficients could be calculated as:

b0 = 1 + αA a0 = 1 +
α

A
b1 = −2cs a1 = −2cs

b2 = 1− αA a2 = 1− α

A

The difference equation for the second-order IIR filter in (2.7) has a total
of five filter coefficients – b0, b1, b2, a1 and a2. The formulae by Bristow-
Johnson gave six filter coefficients for the following difference equation with
an additional a0 coefficient

a0y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]− a1y[n− 1]− a2y[n− 2] (2.9)

If a0 was normalized to be 1, the difference equation could be rewritten

y[n] =
b0

a0
x[n] +

b1

a0
x[n− 1] +

b2

a0
x[n− 2]− a1

a0
y[n− 1]− a2

a0
y[n− 2]

=
1
a0

(
b0x[n] + b1x[n− 1] + b2x[n− 2]− a1y[n− 1]− a2y[n− 2]

)

(2.10)

This was the difference equation that was implemented in the C++ plug-in
code.

19

3 Prototype

The method for plug-in development investigated in this thesis comprised
two steps – a prototype and an implementation. The prototype was used to
gain familiarity with the DSP algorithm and the mathematical calculations
necessary to achieve the desired result of realizing a parametric EQ. Within
the prototype environment, the DSP algorithm could easily be applied to
any audio file or generated test signal, e.g. white noise. Parameter adjust-
ments could be made in real-time and the results of the processing could
immediately be listened to. This gave practical experiences with the filter
coefficient formulae, that would have taken considerably longer time to get
if the C++ implementation had been started on directly.

3.1 Max/MSP

The prototype was made using Max/MSP9, which is a graphical program-
ming environment for developing real-time MIDI and audio applications on
MacOS, described by Puckette in [16]. Max, the basic application, provides
the general programming and MIDI functionality, and MSP (Max Signal
Processing) adds signal processing extensions to Max that allow the devel-
opment of audio applications.

The fundamental concept in Max/MSP is the patch. A patch is a col-
lection of on-screen boxes connected by virtual patch cords. The boxes
represent different signal processing objects. An example of a simple patch
is shown in figure 5. This patch shows an oscillator (cycle˜) generating a

Figure 5: A simple Max/MSP patch.

1 kHz sine tone. The signal level is controlled by the fader object before
the signal is sent to the dac˜ object (digital-to-analogue converter, i.e. the
audio interface output).

9http://www.cycling74.com/products/maxmsp.html

20

Creating patches in Max/MSP is a kind of graphical object-oriented
programming. The object boxes represent unit generators that are inter-
connected to form signal processing patches that generate or modify audio
signals. Max/MSP is named after Max Mathews, one of the pioneering re-
searchers and experimenters within the field of computer audio at AT&T
Bell Laboratories in the 1960s. He originally developed the ideas of the unit
generator programming concept [9].

In Max/MSP the signal processing boxes all have names ending in tilde,
as in cycle˜ and dac˜. In figure 5 there are also two other kinds of boxes.
The fader is a kind of tilde box used to provide a graphical user interface
control, and the number box (with the value of 1000) represents the type of
non-tilde boxes that are used to handle non-audio signals, like numbers for
calculations, etc.

The graphical object-oriented surface of Max/MSP is built on the tradi-
tional programming language C. A user of Max/MSP never interacts directly
with the C layer other than if there is a need to develop new specialized unit
generator boxes – a process called writing external objects.

3.2 Algorithm testing

Max/MSP provides an object called biquad˜. It implements a second-order
IIR difference equation and has control inputs for five filter coefficients in
addition to audio signal input and output. For the plug-in prototype, a
patch was made that given three control inputs – frequency, gain and Q
– delivered five control outputs – the filter coefficients for a biquad. The
patch is shown in figure 6. Even though it may look a bit complicated with
all the crossed patch cords, a patch like this can be made fairly easily, even
by someone not knowledgeable in a traditional programming language like
C++.

In order to verify aurally if the filter calculations were working correctly,
another patch was made that allowed white noise to be sent through the
biquad˜ object. Now, the coefficients could be applied and the filter per-
formance listened to, as the frequency, gain and Q values were adjusted in
real-time. The patch is shown in figure 7. Note that the whole patch in
figure 6 is included as a sub-patch in figure 7. Max/MSP allows this type
of nesting of patches within other patches.

Some additional patches were made to make preliminary measurements
using sine tone sweeps to view graphically the magnitude of the frequency
response of the filter. Later, in chapter 5, the results of analyzing the C++
version of the plug-in, using an impulse response to find the magnitude and
the phase of the frequency response, is presented.

21

Figure 6: Patch to calculate biquad coefficients.

Figure 7: Patch to listen to filtered white noise.

22

3.3 Pluggo

The easiest way to transform the parametric EQ prototype into a VST plug-
in would be to use the plug-in objects – collectively referred to as pluggo –
provided in Max/MSP. The patch in figure 8 shows the pluggo version of
the prototype with the plugin˜ and plugout˜ objects. This essentially is
a working VST plug-in. Pluggo can also be used to make RTAS and MAS
plug-ins.

Figure 8: A pluggo version of the parametric EQ VST plug-in.

Pluggo plug-ins only work on Macintosh computers. To be able to make
versions of the VST plug-in for multiple computer platforms, they have to
be written in C++.

23

4 Implementation

The information contained in this chapter constitutes the innermost spe-
cialist layer of the thesis, and as such assumes a prior working knowledge of
C++ syntax and terminology. Nevertheless, the presentation in this chapter
is such that the interested reader should be able to understand the overall
structure of the source code of a VST plug-in, even without expert knowl-
edge in C++.

For the implementation the Steinberg VSTSDK C++ framework was
used. The source code was compiled using the Visual C++10 development
environment on Windows, and the CodeWarrior11 development environment
on MacOS. For all the supported platforms, the source code of a VST plug-
in is identical. The compiled plug-in format differs though. On MacOS a
plug-in is a code resource, while on Windows a plug-in is a multi-threaded
DLL. For BeOS and SGI/MOTIF a plug-in is a library [1].

4.1 The VSTSDK C++ framework

The VSTSDK consists of an object-oriented C++ framework for building
VST plug-ins. All the basic functionality that a plug-in needs is provided
by a base class, e.g. the communication of audio sample buffers between
the host application and the plug-in, and the handling of user adjustable
input parameters. The code in the VSTSDK specifies a plug-in API that
abstractly sits on top of the host application. Writing audio plug-ins relieves
the programmer of the burden to communicate directly with the audio in-
terface hardware in the computer, since this is taken care of by the host
application on a lower level, using one of the audio APIs that the audio
interface driver provides. An illustration of this can be seen in figure 9.

plug-in
plug-in API¾

host app
audio API¾

driver

audio HW

Figure 9: Plug-in API and audio API – a hierarchical view.

10http://msdn.microsoft.com/visualc/
11http://www.metrowerks.com/MW/Develop/Desktop/Macintosh/Default.htm

24

The host provides a default GUI for the plug-in if the programmer has
not developed a specific GUI, to let the user adjust the input parameters.
Thus, the majority of programming effort can be put into the DSP part of
the plug-in code.

4.2 The AudioEffect and AudioEffectX classes

In 1996 the VST 1.0 specification was released. The version used for the
plug-in in this thesis is the VST 2.0 specification, which is an extension of
the 1.0 specification.

In the VST specification, the base class for all plug-ins is called AudioEffect,
and is defined in a file named AudioEffect.hpp. Parts of that file look like
the following:

class AudioEffect // VST 1.0 specification.

{

public:

AudioEffect(); // Constructor.

virtual ~AudioEffect(); // Destructor.

virtual void process(); // Called by the host for an aux effect.

virtual void processReplacing(); // Called by the host for an insert effect.

virtual void setParameter(); // Sets a specified parameter value.

virtual float getParameter(); // Gets a specified parameter value.

virtual void getParameterName(); // e.g. "Frequency" in GUI.

virtual void getParameterDisplay(); // e.g. "1000.0" in GUI.

virtual void getParameterLabel(); // e.g. "Hz" in GUI.

virtual void setProgramName(); // Used if the plug-in uses

virtual void getProgramName(); // parameter setting presets.

protected:

float sampleRate; // Current sample rate used by the host.

};

The code has been edited and shortened (empty parameter lists) to increase
clarity, and the comments are by the author. Only the most relevant meth-
ods and data members are shown. The VST 2.0 specification extends the
base class by defining a sub class AudioEffectX in the file audioeffectx.h:

class AudioEffectX : public AudioEffect // VST 2.0 specification.

{

// All the code here is left

// out to increase clarity.

};

All the code has been left out since the new methods and data members
are not relevant for the parametric EQ plug-in. As the AudioEffectX class
inherits from the AudioEffect class, it is compatible to the VST 1.0 spec-
ification. The classes are implemented in the files AudioEffect.cpp and
audioeffectx.cpp respectively.

25

VST plug-ins have two methods that contain the actual signal processing
code – process() and processReplacing(). The method process() gets called
by the host when the plug-in is used in an aux send configuration. If the plug-
in is used as an insert effect in the host, then the method processReplacing()
gets called instead.

4.3 The Biquad class

To make the parametric EQ plug-in, a new sub class – Biquad – was defined
and implemented, that inherited from AudioEffectX. In this sub class, the
methods process() and processReplacing() got their redefined implementa-
tions. The class hierarchy is shown in figure 10.

AudioEffect VST 1.0

process()
processReplacing()

6

AudioEffectX VST 2.0

6

Biquad

process()
processReplacing()

Figure 10: Class hierarchy for the Biquad VST plug-in.

The class Biquad was defined in the following way:

class Biquad : public AudioEffectX // Second-order IIR parametric EQ sub class.

{

public:

Biquad(audioMasterCallback audioMaster); // Constructor.

~Biquad(); // Destructor.

virtual void process(float **inputs, float **outputs, long sampleFrames);

virtual void processReplacing(float **inputs, float **outputs, long sampleFrames);

virtual void setProgramName(char *name);

virtual void getProgramName(char *name);

virtual void setParameter(long index, float value);

26

virtual float getParameter(long index);

virtual void getParameterLabel(long index, char *label);

virtual void getParameterDisplay(long index, char *text);

virtual void getParameterName(long index, char *text);

virtual void calcCoeffs(float f, float g, float q); // Compute biquad coefficients.

virtual float calcFreq(float f); // Convert 0.0...1.0 --> 20 Hz... 20 kHz

virtual float calcGain(float g); // Convert 0.0...1.0 --> -12 dB...+12 dB

virtual float calcQ(float q); // Convert 0.0...1.0 --> 0.33... 12.0

protected:

float fFrequency; // 0.0 ... 1.0 Internal

float fdBGain; // 0.0 ... 1.0 parameter

float fQ; // 0.0 ... 1.0 format.

float jFrequency; // 20 Hz ... 20 kHz GUI

float jdBGain; // -12 dB ... +12 dB parameter

float jQ; // 0.33 ... 12 format.

float xnm1; // x[n-1]

float xnm2; // x[n-2]

float ynm1; // y[n-1]

float ynm2; // y[n-2]

float a0, a1, a2, b0, b1, b2; // The biquad coefficients.

};

The code shown is not edited but the actual source code used to compile the
plug-in. Only some macro definitions (#define) and enumerations (enum),
preceding the class declaration, have been edited out to shorten the code
listing.

In the method calcCoeffs() the formulae for calculating the filter coeffi-
cients were implemented:

void Biquad::calcCoeffs(float f, float g, float q)

{

float A, omega, cs, sn, alpha; // Intermediate variables.

A = pow(10,g/40.0f);

omega = (2 * M_PI * f) / sampleRate; // M_PI macro holds value of pi.

sn = sin(omega);

cs = cos(omega);

alpha = sn / (2.0*q);

b0 = 1 + (alpha * A); // The filter coefficients.

b1 = -2 * cs;

b2 = 1 - (alpha * A);

a0 = 1 + (alpha / (float)A);

a1 = -2 * cs;

a2 = 1 - (alpha / (float)A);

}

27

The actual audio sample processing code was implemented in the method
processReplacing() in the following way:

void Biquad::processReplacing(float **inputs, float **outputs, long sampleFrames)

{

float *in = inputs[0]; // in points to the first sample in the input buffer.

float *out = outputs[0]; // out points to the first sample in the output buffer.

float xn, yn; // xn/yn holds current input/output sample.

while(--sampleFrames >= 0) // Go through the buffers sample-by-sample.

{

xn = *in++; // Get xn from the input buffer.

yn = (b0*xn + b1*xnm1 + b2*xnm2 - a1*ynm1 - a2*ynm2)/a0; // Biquad equation.

xnm2 = xnm1; // Shift x[n-1] to x[n-2].

xnm1 = xn; // Shift x[n] to x[n-1].

ynm2 = ynm1; // Shift y[n-1] to y[n-2].

ynm1 = yn; // Shift y[n] to y[n-1].

*out++ = yn; // Put yn into the output buffer. (Overwrite)

}

}

Only the method processReplacing() is shown here, since the natural way of
using an EQ plug-in would be as an insert effect. The VST specification re-
quires that the method process() is always provided, while processReplacing()
is optional, and the specification highly recommends that both methods are
always implemented. In the Biquad class, the method process() only differed
from the method processReplacing() in the last line of code,

(*out++) += yn; // Put yn into the output buffer. (Accumulate)

where the assignment operator += was substituted for =.

The C++ code listings in this section have been kept to a minimum in
order to make the general ideas come out clear, without being cluttered by
too much detail. By email inquiry to the author, the complete C++ code
listings for the peak/notch parametric EQ VST plug-in can be obtained12.

12jonas.ekeroot@mh.luth.se

28

5 Results

The parametric EQ VST plug-in was tested in a number of different VST
host applications on both Windows and MacOS. For the testing on Win-
dows, an IBM T22 ThinkPad laptop computer was used with the following
hardware and operating system specifications:

• 900 MHz Intel Pentium III processor

• 256 MB RAM

• Windows XP Professional operating system, version 2002

• built-in audio hardware (Crystal SoundFusion Audio Device by Crystal
Semiconductor)

The MacOS testing was performed on an Apple PowerBook G3 laptop com-
puter with the following hardware and operating system specifications:

• 500 MHz PowerPC G3 processor

• 256 MB RAM

• MacOS 9.1 operating system

• built-in audio hardware (Screamer sound IC)

The plug-in appeared without a problem in all of the host applications
on both Windows and MacOS. By playing sound files from the hard disk
and applying the plug-in, the audio processing of the plug-in was found to
be working in all of the applications tested. In this way, aural assessments
of how the signal processing of the plug-in affected different audio signals
were made.

Then, to measure the plug-in performance objectively, Matlab was
used to analyze an impulse response made with the host application Au-
dioMulch13 and the parametric EQ VST plug-in. By recording the impulse
response of the plug-in for a specific setting of the parameters (frequency,
gain and Q value), and transforming the impulse response into the frequency
domain, the magnitude and the phase of the frequency response of the filter
were extracted and plotted in graphs.

Finally, the resulting default GUI of the plug-in in a number of different
host applications on both Windows and MacOS were compared.

13http://www.audiomulch.com

29

5.1 Aural assessment

During the prototype development in Max/MSP, the performance of the
biquad˜ object was listened to, using the calculated filter coefficients. The
compiled VST plug-in was also listened to in all of the tested host appli-
cations. Using both white noise and music as input signals, the filter was
aurally verified to be boosting or attenuating the region of the frequency
spectrum that was set with the frequency, gain and Q parameters.

5.2 Matlab measurements

A digital filter is completely characterized by its time-domain impulse re-
sponse, as stated by Pohlmann [17]. Further, the filter can also be described
in the frequency-domain by its frequency response. The impulse response
and the frequency response of a discrete-time system are related by the
Discrete Fourier Transform (DFT). A computationally efficient implemen-
tation of the DFT is the Fast Fourier Transform (FFT). McClellan et al [7]
gave a detailed description of both the DFT and the FFT. The FFT trans-
forms the impulse response into the frequency response, which is a complex
valued function. By stepping through the frequency response and for each
complex value find the absolute value and the argument (polar notation),
the magnitude and the phase of the frequency response of the digital filter
is obtained.

For the analysis of the VST plug-in, the following Matlab script was
written to read the impulse response from a WAV file, compute the FFT,
and then extract the magnitude and the phase of the frequency response:

[H,FS,NBITS] = wavread(’ir_L_44_16_1k+12_1.wav’); % Read impulse response from WAV file.

[M,I] = max(H); % Find start of impulse response (IR).

sa_beg = I; % Index of first sample in IR.

sa_end = sa_beg + (FS - 1); % Use FS samples (1 sec) of IR.

Hcut = H(sa_beg:sa_end,1); % Extract IR from H (whole WAV file).

fftHcut = fft(Hcut,FS); % FFT (DFT) of length FS.

posFFT = fftHcut(1:length(fftHcut)/2,1); % Use only positive frequencies.

s1 = subplot(3,1,1);

stem(Hcut(1:128,1),’.’) % Plot first 128 samples of IR.

s2 = subplot(3,1,2);

loglog(abs(posFFT)) % Plot the magnitude response.

s3 = subplot(3,1,3);

semilogx(angle(posFFT)) % Plot the phase response.

A one channel (mono) WAV file with a sampling frequency of 44.1 kHz
was made using Matlab. The file was two seconds in length (i.e. 88200
samples) and had all sample values set to zero, except for one sample set

30

to the normalized sample value of 0.5, corresponding to −6 dBFS. This im-
pulse was in the middle of the WAV file, after 1 second of silence. Using
AudioMulch, this impulse WAV file was played through the parametric EQ
VST plug-in, and the impulse response was recorded into a new WAV file.
With the Matlab script described earlier, the frequency response was cal-
culated by means of the FFT.

The VST plug-in was tested with several different parameter settings.
One of these settings is presented in this thesis. Assuming that the sample
index n of the original impulse value of 0.5 is n = 1, figure 11 shows the first
128 samples of the original impulse and the impulse response of the VST
plug-in with the following filter settings: f = 997.7691 Hz, g = +12.0 dB
and Q = 1.000277. Since this was an IIR filter, the impulse response theo-

0 20 40 60 80 100 120

0

0.2

0.4

0.6

Sample index, n

Sa
m

pl
e

va
lu

e

original impulse

0 20 40 60 80 100 120

0

0.2

0.4

0.6

Sample index, n

Sa
m

pl
e

va
lu

e

impulse response

Figure 11: The first 128 samples of the original impulse and the
impulse response. (f = 997.7691 Hz, g = +12.0 dB and
Q = 1.000277)

retically never decreased to zero and stayed at that value, but continued to
oscillate above and below the zero level for ever. For all frequency response
calculations made, one second of the impulse response, i.e. 44100 samples
at a sampling rate of 44.1 kHz, was used.

Note that the first sample (n = 1) in the impulse response in figure
11 has a value of approximately 0.551, which is greater than the original

31

impulse value of 0.5. For this reason, the original impulse value was cho-
sen to be less than 1.0 so that the increased sample value in the impulse
response would stay below the maximally allowed value of 1.0 using normal-
ized floating-point sample values. Failure to observe this requirement gives
erroneous frequency response results due to overflow values greater than 1.0
in the impulse response.

The magnitude and the phase of the frequency response of the filter with
the impulse response shown in figure 11, are shown in figure 12.

31.25 62.5 125 250 500 1000 2000 4000 8000 16000
−12

−6

0

6

12

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

31.25 62.5 125 250 500 1000 2000 4000 8000 16000
−180

−90

0

90

180

Frequency (Hz)

P
ha

se
 s

hi
ft

(d
eg

re
es

)

Figure 12: The magnitude and the phase of the frequency response.
(f = 997.7691 Hz, g = +12.0 dB and Q = 1.000277)

A bell-shaped curve with a maximum around 1 kHz, with 12 dB gain relative
to the 0 dB line, can be seen in the graph of the magnitude response. The
Matlab script sets the number of points in the FFT calculation to the same
value as the sampling rate of the WAV file containing the impulse response.
This gives a resolution of 1 Hz in the frequency response. The center of
the magnitude peak in figure 12 is at fcenter = 998 Hz. The midpoint gain
(i.e. g/2 dB) frequencies, as discussed in 2.5.5, are at flower = 616 Hz and
fupper = 1613 Hz. This bandwidth gives a Q value of

Q =
fcenter

fupper − flower
=

998
1613− 616

≈ 1.001003 (5.1)

32

As can be seen from the lower graph in figure 12, the filter has a
non-linear phase response. This phase distortion is a known fact for re-
cursive IIR filters [9], and means that the filter smears transients over time
due to the frequency dependent delay. FIR filters, in contrast, can generally
be designed to have a linear phase response, but the disdvantage of an FIR
filter is that it is computationally more intensive and has higher memory re-
quirements (longer feedforward delays, i.e. higher order) than an IIR filter
with similar magnitude response.

So, in conclusion, and analyzed with a 1 Hz frequency-domain resolu-
tion, the frequency position, the gain value and the bandwidth of the peak
corresponded well with the given parameter settings of the VST plug-in.

5.3 Default plug-in GUI

Since the implementation presented in this thesis did not deal at all with
the GUI of the plug-in, the graphical representation varied among the ap-
plications, as can be seen from figure 13 to figure 18.

5.4 Windows host applications

On Windows the plug-in was tested using three different VST host applica-
tions:

• WaveLab 3.04g by Steinberg14

• AudioMulch 0.9b9p1 – an interactive music studio by Ross Bencina,
beta version15

• Audacity 0.98 – a free, open-source (C++, GNU General Public Li-
cense), multi-platform (Windows, MacOS and Unix/Linux) digital au-
dio editor, started in 1999 as a development project by Dominic Maz-
zoni at Carnegie Mellon University16

5.4.1 WaveLab

Figure 13 shows a screenshot of the parametric EQ VST plug-in with the
default GUI provided by WaveLab. The plug-in window imitates the front
panel of an external hardware effects unit with a display-like view of the
parameter values, buttons to switch between the three parameters and a
large dial to adjust parameter values. WaveLab also provides additional
buttons to bypass or mute the plug-in, and to handle presets, i.e. predefined

14http://www.steinberg.net/en/ps/products/audio editing/wavelab/
15http://www.audiomulch.com
16http://audacity.sourceforge.net

33

Figure 13: Parametric EQ VST plug-in in WaveLab.

parameter settings supplied by the original programmer of the plug-in or set
and saved by the plug-in user.

The audio processing of the plug-in is applied in real-time.

5.4.2 AudioMulch

The default GUI provided by AudioMulch is considerably less sophisticated
than in WaveLab, as figure 14 shows. A spreadsheet-like layout shows the

Figure 14: Parametric EQ VST plug-in in AudioMulch.

parameters. By clicking with the mouse on the name, the current parameter
to edit is selected, and a vertical slider (fader) then adjusts the parameter
value. As in WaveLab, the audio processing is applied in real-time.

The implemented parametric EQ plug-in is a pure mono plug-in, i.e. it
has one channel of input and one channel of output. In many host applica-
tions, the number of input and output channels of a plug-in is not clearly
indicated, which can be a source of confusion depending on how the source
code of the plug-in is written. AudioMulch has a patch window, a bit simi-
lar to Max/MSP, where the exact number of plug-in inputs and outputs can
clearly be seen. Figure 15 shows a patch where the mono output of a test
signal generator is connected to the mono input of the parametric EQ VST
plug-in. The mono output of the plug-in is then connected to the left chan-
nel output of the audio interface in the computer. In this way, AudioMulch
gives a good overview of the signal paths of a patch involving a VST plug-in.
This was of great help during the plug-in development stage, and also later

34

Figure 15: Patch in AudioMulch showing a mono plug-in.

for testing purposes.

5.4.3 Audacity

Audacity provides a simplistic default plug-in GUI, as shown in figure 16.

Figure 16: Parametric EQ VST plug-in in Audacity.

The GUI differs in principle from those provided by WaveLab and Au-
dioMulch in that each of the three parameters have their own horizontal
slider for value adjustments. As was also the case in AudioMulch, there are
no extra buttons provided by the host for bypass, mute or presets.

Audacity has a limitation that means that even though the plug-in is
capable of providing real-time processing, all plug-in processing is applied
in non-real-time. The filter calculations for all of a selected audio track have
to be completed, before the results of the plug-in can be listened to.

5.5 MacOS host applications

The host applications used on MacOS were:

• Cubase VST 5.0 by Steinberg, demo version17

• Max 4.0.7/MSP 2.0 using the vst˜ object
17http://service.steinberg.de/webdoc ps int.nsf/show/demos applications pro mac en

35

5.5.1 Cubase VST

In Cubase VST the parametric EQ plug-in showed up as in figure 17. The

Figure 17: Parametric EQ VST plug-in in Cubase.

GUI is a bit more elaborate than in AudioMulch and Audacity. It uses a
separate horizontal slider for each parameter in the same way as in Audacity.
An on/off button is provided as well as a popup menu to handle the loading
and saving of preset files.

The audio processing of the plug-in is applied in real-time.

5.5.2 Max/MSP

Even though Max/MSP was used as a prototype development environment
for the parametric EQ plug-in, it can also act as a totally reconfigurable VST
host application using the vst˜ object. The default plug-in GUI provided
by this object can be seen in figure 18, which shows that the separate three-
slider approach is used in Max/MSP too.

Figure 18: Parametric EQ VST plug-in in Max/MSP.

No extra buttons for bypass, mute or presets are graphically visible. This
functionality can be accessed though by connecting additional control ob-
jects to the vst˜ object. Note that the internal parameter scale of 0.0 to
1.0 is shown above the sliders.

The audio processing of the plug-in is applied in real-time.

5.6 Parameter adjustments

An important aspect of implementing audio plug-ins is to try to make the
parameter adjustments as responsive as possible, so that they do not appear
sluggish or create audible artefacts while being changed. The responsiveness

36

of the parametric EQ VST plug-in implemented in this thesis showed a slug-
gish tendency in WaveLab and AudioMulch on Windows. In Cubase VST
and Max/MSP on MacOS the plug-in showed no sluggish tendency at all,
and the responsiveness was completely smooth. Since Audacity on Windows
applied the plug-in processing in non-real-time, the responsiveness could not
be evaluated in that host application.

The sluggishness of the parametric EQ VST plug-in on Windows was
found to be about the same and not worse than the sluggishness experienced
when comparing the plug-in with the included EQ-1 plug-in in WaveLab and
the included MParaEQ filter in AudioMulch.

5.7 Summary of results

The resulting C++ implementation of the VST plug-in was verified using
five different host applications on both Windows and MacOS, and the plug-
in was found to be working both visually (the default GUI) and aurally in all
of them. Measurements using Matlab also showed that the plug-in affected
the frequency content of the audio in a way that was consistent with the
desired parameter settings.

The responsiveness of the parameter adjustments showed a sluggish ten-
dency in WaveLab and AudioMulch on Windows. So, when compiled using
different compilers and operating systems, the same C++ source code re-
sulted in a noticeable different sluggishness for the plug-in when used in
the tested Windows and MacOS host applications on the computer systems
used during the work of this thesis.

37

6 Discussion

6.1 Max/MSP and similar applications

Max/MSP is currently available only for MacOS, but a Windows version
is in development and it was publicly demonstrated in January 2003. This
would make it possible to do plug-in prototyping also on Windows in the
same way as shown in this thesis. Two software applications that could
possibly be used to make prototypes in a similar way are

• Pd (Pure Data) – a real-time music and multimedia environment18

• jMax – a visual programming environment for interactive real-time
music and multimedia19

Pd is a free, open-source, Max/MSP-like application for Windows, Linux,
SGI/IRIX and MacOS X, developed by Miller Puckette – one of the original
developers of Max/MSP. The GUI front end of Pd is made using the scripting
language Tcl/Tk.

The historical roots of Max/MSP can be found at IRCAM20 in Paris. To-
day IRCAM provides the application jMax as a freely downloadable Max/MSP-
like application that runs on Windows, Linux, SGI/IRIX and MacOS X.
jMax is distributed under the GNU General Public License. It uses Java for
the GUI front end.

Among commercial products Reaktor21 from Native Instruments makes
use of graphical patch programming in the spirit of Max/MSP. Reaktor is
available for Windows and MacOS, and the whole development environment
can actually be used as a VST plug-in, a DirectX plug-in or an Audio Units
plug-in.

6.2 The VSTSDK C++ source code

The C++ source code in the VSTSDK provides a well structured frame-
work to be used as a starting point for plug-in development. Anyone who
knows digital audio and C++ should not find it very hard to understand.
This fact, and the possibility that from the same source code files create
plug-ins for multiple computer platforms, should make it interesting for stu-
dents who want to learn about audio DSP in software. The majority of
programming effort can be put into the audio DSP part of the code, since
all hardware interaction, e.g. audio input and output, is taken care of by
the host application. For companies focusing on plug-in development, the
same source code base can be used to make plug-ins for both MacOS and

18http://www-crca.ucsd.edu/˜msp/software.html
19http://www.ircam.fr/jmax
20http://www.ircam.fr/index-e.html
21http://www.native-instruments.com/index.php?reaktor us

38

Windows, eliminating the need to maintain separate source code bases for
the different platforms. The VST format is a popular plug-in format, well
established on the market among third-party developers.

For more complex plug-ins, issues like the handling of threads on different
platforms, might pose problems and make the source code platform depen-
dent in a way that is not illustrated by the comparatively simple parametric
EQ plug-in developed in this thesis.

6.3 Optimization

The C++ code written for the parametric EQ plug-in was not optimized in
any way for speed or size. It was simply a straightforward implementation
of a second-order IIR filter and the necessary formulae to calculate the filter
coefficients. As such, the code is more an illustration of the basic principles
of plug-in programming, rather than a highly optimized top performing EQ
plug-in.

Future work in this area could try to minimize the CPU load of the
plug-in. This is an important area in general, since all the plug-ins in a host
application share the same finite amount of available CPU power, and less
CPU load per plug-in means that more plug-ins can be used at the same
time.

6.4 The frequency parameter limits

The parametric EQ VST plug-in allows the frequency parameter to be set
in the range 20 - 20000 Hz. This is regardless of the sampling rate used by
the host application, and thus also used by the plug-in. Equation (2.10) on
page 19 involves the division by the filter coefficient a0. Because of this, the
value of a0 must not be zero. For a0 = 1+α/A to become zero, the fraction
α/A must be −1. A = 10g/40 is always positive. Q, used in the calculation
of α = sn/2Q, is per definition also positive, so for α to take on negative
values, sn = sin 2πf/fs has to be negative. This occurs for fs/2 < f < fs.
The sampling theorem states:

“A continuous-time signal x(t) with frequencies no higher than
fmax can be reconstructed exactly from its samples x[n] = x(nTs),
if the samples are taken at a rate fs = 1/Ts that is greater than
2fmax.” [7]

In other words, since a digital signal only contains frequency components
up to half the sampling rate (fs/2), the plug-in frequency parameter should
not be allowed to exceed this limit either. The parametric EQ VST plug-
in implementation uses a fixed range of 20 - 20000 Hz for the frequency
parameter, which means that α can take on negative values for a sampling

39

frequency below 40 kHz. So for a sampling frequency of 44.1 kHz or 48 kHz,
a0 will never be zero in the plug-in implementation.

An example of a problematic case would be a sampling frequency of
22050 Hz with f = 16537.5 Hz, g = 0 dB and Q = 0.5. The frequency
parameter should in this case really not be allowed to be set any higher
than f = 11025 Hz as a maximum, but f = 16537.5 Hz is possible in the
current plug-in implementation. This results in A = 1 and α = −1 and thus
a0 = 0. To summarize, a future version of the parametric EQ VST plug-in
should not have a fixed upper limit for the frequency parameter, but use a
value of fupper limit < fs/2 in order to cope with lower sampling rates.

6.5 Cross-platform GUI

As shown by the figures in chapter 5, the default GUI appearance of the
parametric EQ plug-in differs considerably among host applications and
operating systems. By adding code to handle a custom GUI, the plug-in
can be made to have the same look regardless of the host application used.

GUI programming generally can be rather complicated, and tends to be
very platform specific. Included in the VSTSDK are the VSTGUI Libraries
to be used to create and handle a GUI with faders, knobs, dials, etc. This
provides a way of implementing a GUI without having to deal with platform
specific details. Creating a custom GUI was out of the scope for this thesis,
but might be an interesting path for future examination.

6.6 Conclusions

This thesis focused on the development of a VST audio plug-in. By starting
with a prototype made in a graphical programming environment, hands-on
experience with the necessary DSP theory and calculations was obtained.
This experience was then applied in the implementation of the plug-in in
C++. Because of the preparatory algorithmic work that was done in the
prototype, the C++ implementation was made without any major prob-
lems. In addition to this development method in two stages, the thesis also
demonstrated a way of verifying the audio processing of the final plug-in,
by analyzing impulse response measurements using Matlab.

40

References

[1] Steinberg VST 2.0 Software Development Kit (SDK).
URL: http://www.steinberg.net/en/ps/support/3rdparty/

[2] Arfib, D. (1998) Different Ways to Write Digital Audio Effects Pro-
grams. In Proceedings of the COST-G6 Workshop on Digital Audio
Effects Processing (DAFx’98), 19-21 Nov 1998, Barcelona, Spain, pp.
188-191.
URL: http://www.iua.upf.es/dafx98/papers/ARF36.PS

[3] MacMillan, K., Droettboom, M. and Fujinaga, I. (2001) Audio Latency
Measurements of Desktop Operating Systems. In Proceedings of the
International Computer Music Conference (ICMC), 17-22 Sep 2001,
Havana, Cuba, pp. 259-262.
URL: http://gigue.peabody.jhu.edu/~mdboom/latency-icmc2001.pdf

[4] Zölzer, U. (2002) DAFX – Digital Audio Effects. John Wiley & Sons,
Chichester, West Sussex.

[5] Bendiksen, R. (1997) Digitale lydeffekter. Diplomoppgave i
akustikk, Norges teknisk-naturvitenskapelige universitet, Institutt
for teleteknikk, Trondheim.
URL: http://www.notam02.no/~rbendiks/Diplom.html

[6] Browning, P. (1997) Audio Digital Signal Processing In Real Time.
Master’s thesis, West Virginia University, Morgantown.
URL: http://www.tcicomp.com/paul/dsp/docword97.zip

[7] McClellan, J., Schafer, R. and Yoder, M. (1998) DSP First: A Mul-
timedia Approach. Prentice-Hall, Upper Saddle River, New Jersey.
Reprinted with corrections June, 1999.

[8] Patterson, D. and Hennessy, J. (1998) Computer Organization and De-
sign – The Hardware/Software Interface, 2nd ed. Morgan Kaufmann
Publishers, San Francisco.

[9] Roads, C. (1996) The Computer Music Tutorial. The MIT Press, Cam-
bridge, Massachusetts.

[10] Dattorro, J. (1988) The Implementation of Recursive Digital Filters for
High Fidelity Audio. J. Audio Eng. Soc. Vol.36, No.11, pp. 851-878.

[11] Bristow-Johnson, R. Cookbook formulae for audio EQ biquad filter co-
efficients.
URL: http://www.harmony-central.com/Computer/Programming/

Audio-EQ-Cookbook.txt

41

[12] Bristow-Johnson, R. (1994) The Equivalence of Various Methods of
Computing Biquad Coefficients for Audio Parametric Equalizers. Pre-
sented at AES 97th Convention, San Francisco. Preprint 3906.
URL: http://www.harmony-central.com/Effects/Articles/EQ_Coefficients/

EQ-Coefficients.pdf

[13] Harris, F. and Brooking, E. (1993) A Versatile Parametric Filter Using
an Imbedded All-Pass Sub-Filter to Independently Adjust Bandwidth,
Center Frequency and Boost or Cut. Presented at AES 95th Conven-
tion, New York. Preprint 3757.

[14] White, S. (1986) Design of a Digital Biquadratic Peaking or Notch
Filter for Digital Audio Equalization. J. Audio Eng. Soc. Vol.34, No.6,
pp. 479-483.

[15] Moorer, J. (1983) The Manifold Joys of Conformal Mapping: Appli-
cations to Digital Filtering in the Studio. J. Audio Eng. Soc. Vol.31,
No.11, pp. 826-841.

[16] Puckette, M. (1991) Combining Event and Signal Processing in the
MAX Graphical Programming Environment. Computer Music Journal
15(3), pp. 68-77.
URL: http://www-crca.ucsd.edu/~msp/Publications/cmj91-max.ps

[17] Pohlmann, K. (2000) Principles of Digital Audio, 4th ed. McGraw-Hill,
New York.

42

